IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/381.html
   My bibliography  Save this paper

A Spatial Diffusion Model with Common Factors and an Application to Cigarette Consumption

Author

Listed:

Abstract

This paper adopts a dynamic spatial panel data model with common factors to explain the non-stationary diffusion process of cigarette consumption across 69 Italian provinces over the period 1877-1913. The Pesaran (2015) CD-test and the exponent a-test of Bailey et al. (2015) are used to show that both weak and strong cross-sectional dependence are important drivers of the propagation of cigarette demand over this period. Stability tests on the coefficients and the CD-test on the residuals of the model are used to verify whether the data and both forms of cross-sectional dependence are modeled adequately. Cigarettes are found to be a normal good with an income elasticity of 0.4 and a price elasticity -0.4 in the long term. The price elasticity can be decomposed into a direct effect of -0.54 in the own region and a spillover effect to other regions of 0.15. This positive spillover effect is in line with previous spatial econometric studies which investigated cigarette demand in the U.S. states over a more recent period.

Suggested Citation

  • Carlo Ciccarelli & Jean Paul Elhorst, 2016. "A Spatial Diffusion Model with Common Factors and an Application to Cigarette Consumption," CEIS Research Paper 381, Tor Vergata University, CEIS, revised 31 May 2016.
  • Handle: RePEc:rtv:ceisrp:381
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP381.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parent, Olivier & LeSage, James P., 2010. "A spatial dynamic panel model with random effects applied to commuting times," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 633-645, June.
    2. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    3. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    4. Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR & James P. LeSAGE, 2010. "Interpreting Dynamic Space-Time Panel Data Models," LEO Working Papers / DR LEO 800, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    5. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    6. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    7. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    8. Alessandra Fogli & Laura Veldkamp, 2011. "Nature or Nurture? Learning and the Geography of Female Labor Force Participation," Econometrica, Econometric Society, vol. 79(4), pages 1103-1138, July.
    9. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    10. Carlo Ciccarelli & Gianni De Fraja, 2014. "The demand for tobacco in post-unification Italy," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 8(2), pages 145-171, May.
    11. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    12. Korniotis, George M., 2010. "Estimating Panel Models With Internal and External Habit Formation," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 145-158.
    13. Paul Elhorst & Eelco Zandberg & Jakob De Haan, 2013. "The Impact of Interaction Effects among Neighbouring Countries on Financial Liberalization and Reform: A Dynamic Spatial Panel Data Approach," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 293-313, September.
    14. Carlo Ciccarelli & Jacob Weisdorf, 2016. "The Effect of the Italian Unification on the Comparative Regional Development in Literacy, 1821-1911," CEIS Research Paper 392, Tor Vergata University, CEIS, revised 25 Jul 2016.
    15. Fenoaltea,Stefano, 2014. "The Reinterpretation of Italian Economic History," Cambridge Books, Cambridge University Press, number 9781107658080, October.
    16. Ryan R. Brady, 2011. "Measuring the diffusion of housing prices across space and over time," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 213-231, March.
    17. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1, July-Dece.
    18. Baltagi, Badi H & Levin, Dan, 1986. "Estimating Dynamic Demand for Cigarettes Using Panel Data: The Effects of Bootlegging, Taxation and Advertising Reconsidered," The Review of Economics and Statistics, MIT Press, vol. 68(1), pages 148-155, February.
    19. Jesús Mur & Ana Angulo, 2006. "The Spatial Durbin Model and the Common Factor Tests," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(2), pages 207-226.
    20. Carlo Ciccarelli, 2012. "The Consumption of Tobacco in Italy, 1871-1913: National and Regional Estimates," Rivista di storia economica, Società editrice il Mulino, issue 3, pages 409-452.
    21. Mur, Jesús & Angulo, Ana, 2009. "Model selection strategies in a spatial setting: Some additional results," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 200-213, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciccarelli, Carlo & Elhorst, J.Paul, 2018. "A dynamic spatial econometric diffusion model with common factors: The rise and spread of cigarette consumption in Italy," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 131-142.
    2. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    3. repec:rri:wpaper:201303 is not listed on IDEAS
    4. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    5. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    6. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    7. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    8. Harry H. Kelejian & Gianfranco Piras, 2016. "A J test for dynamic panel model with fixed effects, and nonparametric spatial and time dependence," Empirical Economics, Springer, vol. 51(4), pages 1581-1605, December.
    9. Chi-Young Choi & Alexander Chudik, 2017. "Geographic Inequality of Economic Well-being among U.S. Cities: Evidence from Micro Panel Data," Globalization Institute Working Papers 330, Federal Reserve Bank of Dallas.
    10. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    11. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    12. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    13. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    14. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    15. Cem Ertur & Antonio Musolesi, 2014. "Dépendance individuelle forte et faible : une analyse en données de panel de la diffusion internationale de la technologie," Working Papers halshs-01015208, HAL.
    16. Halleck Vega, Solmaria & Elhorst, J. Paul, 2016. "A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 85-95.
    17. J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
    18. Solmaria Halleck Vega & J. Paul Elhorst, 2014. "Modelling regional labour market dynamics in space and time," Papers in Regional Science, Wiley Blackwell, vol. 93(4), pages 819-841, November.
    19. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    20. Chi‐Young Choi & Horag Choi & Alexander Chudik, 2020. "Regional inequality in the U.S.: Evidence from city‐level purchasing power," Journal of Regional Science, Wiley Blackwell, vol. 60(4), pages 738-774, September.
    21. Sotirios Thanos & Maria Kamargianni & Andreas Schäfer, 2018. "Car Travel Demand: Spillovers and Asymmetric Price Effects in a Spatial Setting," Transportation Science, INFORMS, vol. 52(3), pages 621-636, June.

    More about this item

    Keywords

    diffusion; non-stationarity; spatial dependence; common factors; cigarette demand;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • N33 - Economic History - - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy - - - Europe: Pre-1913
    • N93 - Economic History - - Regional and Urban History - - - Europe: Pre-1913
    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.