IDEAS home Printed from https://ideas.repec.org/p/rif/dpaper/1024.html
   My bibliography  Save this paper

Climate Policies and Economic Growth

Author

Listed:
  • Alho, Kari

Abstract

A Climate Agreement, like the one reached in Kyoto in 1997, on reducing greenhouse gas emissions may have important effects on the global and the national economies. The aim of this paper is to make some basic numerical evaluations of the economic effects of climate policies, imposing a ceiling on the use of energy input in production in a single economy. First, we make an evaluation under immobile and internationally mobile domestic factors of production, and infer how much international factor mobility, so-called carbon leakage, can magnify the adverse effects. Next, we introduce optimal endogenous growth, so that environmental policies can potentially lead to the introduction of less-polluting energy technologies. The general conclusion of this is that induced R&D in less-polluting energy technologies is likely to reduce the economic burden of climate policies only marginally. Under an internationally tradable emissions permit scheme, however, the endogenous technical change reacts quite vigorously to the price of the pollution right. Finally, we solve for the optimal subsidy to R&D in clean energy technology in a market economy, and find it to be quite sizeable.

Suggested Citation

  • Alho, Kari, 2006. "Climate Policies and Economic Growth," Discussion Papers 1024, The Research Institute of the Finnish Economy.
  • Handle: RePEc:rif:dpaper:1024
    as

    Download full text from publisher

    File URL: http://www.etla.fi/wp-content/uploads/2012/09/dp1024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smulders, J.A. & de Nooij, M., 2003. "The impact of energy conservation on technology and economic growth," Other publications TiSEM c4db0986-2132-4216-aa53-0, Tilburg University, School of Economics and Management.
    2. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    3. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    4. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
    5. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    6. Eicher, Theo S & Turnovsky, Stephen J, 1999. "Non-scale Models of Economic Growth," Economic Journal, Royal Economic Society, vol. 109(457), pages 394-415, July.
    7. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    8. Alho, Kari, 1993. "Growth, the Environment and Environmental Aid in the International Economy," Discussion Papers 429, The Research Institute of the Finnish Economy.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gatto, Andrea & Drago, Carlo & Panarello, Demetrio & Aldieri, Luigi, 2023. "Energy transition in China: Assessing progress in sustainable development and resilience directions," International Economics, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    2. Amigues, Jean-Pierre & Moreaux, Michel & Ricci, Francesco, 2008. "Resource-augmenting R&D with heterogeneous labor supply," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 719-745, December.
    3. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    4. AMIGUES Jean-Pierre & MOREAUX Michel & RICCI Francesco, 2006. "Overcoming the Natural Resource Constraint Through Dedicated R&D Effort with Heterogenous Labor Supply," LERNA Working Papers 06.22.215, LERNA, University of Toulouse.
    5. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    6. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    7. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    8. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.
    9. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    10. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    11. Mónica Meireles & Isabel Soares & Óscar Afonso, 2010. "Economic Growth, Ecological Technology and Public Intervention," FEP Working Papers 378, Universidade do Porto, Faculdade de Economia do Porto.
    12. Peter K. Kruse-Andersen, 2016. "Directed Technical Change and Economic Growth Effects of Environmental Policy," Discussion Papers 16-06, University of Copenhagen. Department of Economics.
    13. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    14. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," Working Papers 2012.18, Fondazione Eni Enrico Mattei.
    15. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2009. "Human capital formation and global warming mitigation: evidence from an integrated assessment model," Working Papers 2009_30, Department of Economics, University of Venice "Ca' Foscari".
    16. Tom-Reiel Heggedal, 2008. "On R&D and the undersupply of emerging versus mature technologies," Discussion Papers 571, Statistics Norway, Research Department.
    17. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    18. Tobias Kronenberg, 2010. "Energy conservation, unemployment and the direction of technical change," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(1), pages 1-17, April.
    19. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    20. repec:dau:papers:123456789/7769 is not listed on IDEAS
    21. Francesco Ricci, 2007. "Resource Conservation and Directed R&D as Strategic Complements," Energy and Environmental Modeling 2007 24000052, EcoMod.

    More about this item

    Keywords

    climate policies; growth; research and development;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rif:dpaper:1024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kaija Hyvönen-Rajecki (email available below). General contact details of provider: https://edirc.repec.org/data/etlaafi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.