IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-23-39.html
   My bibliography  Save this paper

Land-Use Change, No-Net-Loss Policies, and Effects on Carbon Dioxide Removals

Author

Listed:
  • Wear, David N.

    (Resources for the Future)

  • Wibbenmeyer, Matthew

    (Resources for the Future)

Abstract

Carbon dioxide removal (CDR) from the atmosphere, a critical component of all strategies for restricting global warming to 1.5°C, is expected to come largely from the continued sequestration of carbon in vegetation, mainly in forests. Because CDR rates have been declining in the United States, in part from land-use changes, policy proposals focus on altering land uses through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects on CDR requires a careful assessment of how land-use change interacts with forest conditions.Using a model of land-sector emissions that mirror inventories generated by the US government, we evaluate how alternative specifications of land-use change in the United States affect projections of CDR. Without land-use change, CDR declines from 0.826 gigatons (GT) per year in 2017 to 0.596 GT/year in 2062 (–28 percent) because of the aging and disturbance of forest vegetation. With a land-use scenario that extends recent rates of change, we contrast CDR estimates for a case where only net changes in forest area or carbon stocks are tracked with estimates that separately take account of forest losses and forest gains. The net change approach underestimates the CDR effects of land-use change by about 56 percent. We also compare long-run CDR losses from deforestation with gains from afforestation per unit area and find that afforestation gains lag deforestation losses in every US ecological province. Planted forests accelerate CDR benefits over naturally regenerated forests in the Southeast and Pacific Coast regions.Net change approaches substantially underestimate the effects of land-use change on CDR and should be avoided. We show that avoided deforestation provides up to twice as much CDR benefit as increased afforestation. The disparities in the CDR effects of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would likely lead to overall declines in CDR for our 45-year time horizon. Over a longer period, afforestation could offset more of the losses from deforestation but on a timeframe inconsistent with most climate change policy efforts.

Suggested Citation

  • Wear, David N. & Wibbenmeyer, Matthew, 2023. "Land-Use Change, No-Net-Loss Policies, and Effects on Carbon Dioxide Removals," RFF Working Paper Series 23-39, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-23-39
    as

    Download full text from publisher

    File URL: https://www.rff.org/documents/4218/WP_23-39.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    2. Christopher M. Wade & Justin S. Baker & Jason P. H. Jones & Kemen G. Austin & Yongxia Cai & Alison Bean de Hernandez & Gregory S. Latta & Sara B. Ohrel & Shaun Ragnauth & Jared Creason & Bruce McCarl, 2022. "Projecting the Impact of Socioeconomic and Policy Factors on Greenhouse Gas Emissions and Carbon Sequestration in U.S. Forestry and Agriculture," Journal of Forest Economics, now publishers, vol. 37(1), pages 127-131, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omoyemeh J. Ile & Hanna McCormick & Sheila Skrabacz & Shamik Bhattacharya & Maricar Aguilos & Henrique D. R. Carvalho & Joshua Idassi & Justin Baker & Joshua L. Heitman & John S. King, 2022. "Integrating Short Rotation Woody Crops into Conventional Agricultural Practices in the Southeastern United States: A Review," Land, MDPI, vol. 12(1), pages 1-26, December.
    2. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    3. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    4. Sims, Katharine R.E. & Alix-Garcia, Jennifer M., 2017. "Parks versus PES: Evaluating direct and incentive-based land conservation in Mexico," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 8-28.
    5. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    6. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    7. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    8. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    9. KURKALOVA, Lyubov A. & WADE, Tara R., 2013. "Aggregated Choice Data And Logit Models: Application To Environmental Benign Practices Of Conservation Tillage By Farmers In The State Of Iowa," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 13(2), pages 119-128.
    10. Ajanaku, B.A. & Collins, A.R., 2021. "Economic growth and deforestation in African countries: Is the environmental Kuznets curve hypothesis applicable?," Forest Policy and Economics, Elsevier, vol. 129(C).
    11. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    12. Mason, Charles F. & Plantinga, Andrew J., 2011. "Contracting for Impure Public Goods: Carbon Offsets and Additionality," Sustainable Development Papers 101290, Fondazione Eni Enrico Mattei (FEEM).
    13. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    14. John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
    15. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    17. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    18. Ryan, Mary & O’Donoghue, Cathal & Hynes, Stephen, 2018. "Heterogeneous economic and behavioural drivers of the Farm afforestation decision," Journal of Forest Economics, Elsevier, vol. 33(C), pages 63-74.
    19. Antle, John M. & Diagana, Bocar & Stoorvogel, Jetse J. & Valdivia, Roberto O., 2010. "Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-17.
    20. Graeme Guthrie & Dinesh Kumareswaran, 2009. "Carbon Subsidies, Taxes and Optimal Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 275-293, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-23-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.