IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201668.html
   My bibliography  Save this paper

Differences of Opinion and Stock Market Volatility: Evidence from a Nonparametric Causality-in-Quantiles Approach

Author

Listed:
  • Mehmet Balcilar

    (Department of Economics, Eastern Mediterranean University and Department of Economics, University of Pretoria)

  • Riza Demirer

    (Department of Economics and Finance, Southern Illinois University Edwardsville, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, South Africa and IPAG Business School, Paris, France)

  • Mark E. Wohar

    (Department of Economics, University of Nebraska at Omaha, USA and School of Business and Economics, Loughborough University, UK)

Abstract

This paper examines whether the differences of opinion across active money managers relates to stock market volatility via the recently proposed nonparametric causality-in-quantiles test. Using the dispersion in equity market exposures of active managers as a proxy for differences in opinion, we analyze the predictability of (realized) volatility of the S&P500 for the period July, 2006-August, 2016. Unlike the result of no predictability obtained under the misspecified linear set-up, our nonparametric causality-in-quantiles test indicates that dispersion in active managers’ risk exposures to the stock market can predict volatility over the range of quantiles that correspond to moderately high levels of market volatility. Our findings are in line with the previous literature that relates divergent beliefs across investors to subsequent stock returns and suggest that the effect on subsequent returns is likely to be transmitted via the volatility channel. Our results highlight the importance of detecting and modeling nonlinearity when analyzing the information content of divergent beliefs across market participants.

Suggested Citation

  • Mehmet Balcilar & Riza Demirer & Rangan Gupta & Mark E. Wohar, 2016. "Differences of Opinion and Stock Market Volatility: Evidence from a Nonparametric Causality-in-Quantiles Approach," Working Papers 201668, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201668
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    2. Paul A. Gompers & Andrew Metrick, 2001. "Institutional Investors and Equity Prices," The Quarterly Journal of Economics, Oxford University Press, vol. 116(1), pages 229-259.
    3. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    4. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    5. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2002. "Breadth of ownership and stock returns," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 171-205.
    6. Dimitri Vayanos & Paul Woolley, 2013. "An Institutional Theory of Momentum and Reversal," Review of Financial Studies, Society for Financial Studies, vol. 26(5), pages 1087-1145.
    7. Goetzmann, William N. & Massa, Massimo, 2005. "Dispersion of opinion and stock returns," Journal of Financial Markets, Elsevier, vol. 8(3), pages 324-349, August.
    8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    9. Bekiros, Stelios & Gupta, Rangan & Majumdar, Anandamayee, 2016. "Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis," Finance Research Letters, Elsevier, vol. 18(C), pages 291-296.
    10. Ron Kaniel & Péter Kondor, 2013. "The Delegated Lucas Tree," Review of Financial Studies, Society for Financial Studies, vol. 26(4), pages 929-984.
    11. Ajinkya, Bipin B & Gift, Michael J, 1985. "Dispersion of Financial Analysts' Earnings Forecasts and the (Option Model) Implied Standard Deviaitons of Stock Returns," Journal of Finance, American Finance Association, vol. 40(5), pages 1353-1365, December.
    12. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    13. Timothy C. Johnson, 2004. "Forecast Dispersion and the Cross Section of Expected Returns," Journal of Finance, American Finance Association, vol. 59(5), pages 1957-1978, October.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 99-125.
    16. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    17. Berkman, Henk & Dimitrov, Valentin & Jain, Prem C. & Koch, Paul D. & Tice, Sheri, 2009. "Sell on the news: Differences of opinion, short-sales constraints, and returns around earnings announcements," Journal of Financial Economics, Elsevier, vol. 92(3), pages 376-399, June.
    18. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    19. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    20. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    21. Snehal Banerjee, 2011. "Learning from Prices and the Dispersion in Beliefs," Review of Financial Studies, Society for Financial Studies, vol. 24(9), pages 3025-3068.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Gkillas & Rangan Gupta & Chi Keung Marco Lau & Muhammad Tahir Suleman, 2020. "Jumps beyond the realms of cricket: India's performance in One Day Internationals and stock market movements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1109-1127, April.
    2. Rangan Gupta, 2018. "Manager Sentiment and Stock Market Volatility," Working Papers 201853, University of Pretoria, Department of Economics.
    3. Rangan Gupta & Chi Keung Marco Lau & Wendy Nyakabawo, 2018. "Predicting Aggregate and State-Level US House Price Volatility: The Role of Sentiment," Working Papers 201866, University of Pretoria, Department of Economics.
    4. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2022. "Policy Uncertainty and Stock Market Volatility Revisited: The Predictive Role of Signal Quality," Working Papers 202232, University of Pretoria, Department of Economics.
    5. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Business Applications and State-Level Stock Market Realized Volatility: A Forecasting Experiment," Working Papers 202247, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adem Atmaz & Suleyman Basak, 2018. "Belief Dispersion in the Stock Market," Journal of Finance, American Finance Association, vol. 73(3), pages 1225-1279, June.
    2. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    3. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    4. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2022. "Policy Uncertainty and Stock Market Volatility Revisited: The Predictive Role of Signal Quality," Working Papers 202232, University of Pretoria, Department of Economics.
    5. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    6. Khorshed Chowdhury, 2011. "Dynamics, Structural Breaks and the Determinants of the Real Exchange Rate of Australia," Economics Working Papers wp11-11, School of Economics, University of Wollongong, NSW, Australia.
    7. Al-Nasseri, Alya & Menla Ali, Faek, 2018. "What does investors' online divergence of opinion tell us about stock returns and trading volume?," Journal of Business Research, Elsevier, vol. 86(C), pages 166-178.
    8. Ling Cen & K. C. John Wei & Liyan Yang, 2017. "Disagreement, Underreaction, and Stock Returns," Management Science, INFORMS, vol. 63(4), pages 1214-1231, April.
    9. Heidari, Hassan & Katircioglu, Salih Turan & Davoudi, Narmin, 2012. "Are current account deficits sustainable? New evidence from Iran using bounds test approach to level relationships," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-18.
    10. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    11. Kyriakos Emmanouilidis & Christos Karpetis, 2020. "The Defense–Growth Nexus: A Review of Time Series Methods and Empirical Results," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(1), pages 86-104, January.
    12. Junjun Ma & Xindan Li & Lei Lu & Weixing Wu & Xiong Xiong, 2022. "Individual investors' dispersion in beliefs and stock returns," Financial Management, Financial Management Association International, vol. 51(3), pages 929-953, September.
    13. Huisman, Ronald & Van der Sar, Nico L. & Zwinkels, Remco C.J., 2021. "Volatility expectations and disagreement," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 379-393.
    14. Mehmet Balcilar & Abebe Beyene & Rangan Gupta & Monaheng Seleteng, 2013. "‘Ripple’ Effects in South African House Prices," Urban Studies, Urban Studies Journal Limited, vol. 50(5), pages 876-894, April.
    15. Jeffrey Hobbs & Hei Wai Lee & Vivek Singh, 2017. "New evidence on the effect of belief heterogeneity on stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 289-309, February.
    16. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    17. Nikolay Gospodinov & Ian Irvine, 2005. "A ‘long march’ perspective on tobacco use in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 366-393, May.
    18. Fatih Kaplan & Ayşe E. Ünal, 2020. "Industrial Production Index - Crude Oil Price Nexus: Russia, Kazakhstan And Azerbaijan," Economic Annals, Faculty of Economics, University of Belgrade, vol. 65(227), pages 119-142, October –.
    19. Gupta, Rangan & Risse, Marian & Volkman, David A. & Wohar, Mark E., 2019. "The role of term spread and pattern changes in predicting stock returns and volatility of the United Kingdom: Evidence from a nonparametric causality-in-quantiles test using over 250 years of data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 391-405.
    20. Atanu Ghoshray & Issam Malki & Javier Ordóñez, 2022. "On the long-run dynamics of income and wealth inequality," Empirical Economics, Springer, vol. 62(2), pages 375-408, February.

    More about this item

    Keywords

    Realized Volatility; Differences of opinion; Quantile Causality;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201668. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.