IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/74875.html
   My bibliography  Save this paper

One-way and two-way cost allocation in hub network problems

Author

Listed:
  • Bergantiños, Gustavo
  • Vidal-Puga, Juan

Abstract

We study hub problems where a set of nodes send and receive data from each other. In order to reduce costs, the nodes use a network with a given set of hubs. We address the cost sharing aspect by assuming that nodes are only interested in either sending or receiving data, but not both (one-way flow) or that nodes are interested in both sending and receiving data (two-way flow). In both cases, we study the non-emptiness of the core and the Shapley value of the corresponding cost game.

Suggested Citation

  • Bergantiños, Gustavo & Vidal-Puga, Juan, 2016. "One-way and two-way cost allocation in hub network problems," MPRA Paper 74875, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:74875
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/74875/1/MPRA_paper_74875.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/98242/9/MPRA_paper_98242.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    2. Alcalde-Unzu, Jorge & Gómez-Rúa, María & Molis, Elena, 2015. "Sharing the costs of cleaning a river: the Upstream Responsibility rule," Games and Economic Behavior, Elsevier, vol. 90(C), pages 134-150.
    3. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    4. Trudeau, Christian, 2014. "Minimum cost spanning tree problems with indifferent agents," Games and Economic Behavior, Elsevier, vol. 84(C), pages 137-151.
    5. Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
    6. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    7. A.T. Ernst & M. Krishnamoorthy, 1999. "Solution algorithms for the capacitated single allocation hub location problem," Annals of Operations Research, Springer, vol. 86(0), pages 141-159, January.
    8. Guardiola, Luis A. & Meca, Ana & Puerto, Justo, 2009. "Production-inventory games: A new class of totally balanced combinatorial optimization games," Games and Economic Behavior, Elsevier, vol. 65(1), pages 205-219, January.
    9. Perea, F. & Puerto, J. & Fernández, F.R., 2009. "Modeling cooperation on a class of distribution problems," European Journal of Operational Research, Elsevier, vol. 198(3), pages 726-733, November.
    10. Aykin, Turgut, 1994. "Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem," European Journal of Operational Research, Elsevier, vol. 79(3), pages 501-523, December.
    11. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    12. -, 1997. "International economic highlights 1996," Oficina de la CEPAL en Washington (Estudios e Investigaciones) 28965, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    14. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    15. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    16. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    17. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
    18. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    19. Matsubayashi, Nobuo & Umezawa, Masashi & Masuda, Yasushi & Nishino, Hisakazu, 2005. "A cost allocation problem arising in hub-spoke network systems," European Journal of Operational Research, Elsevier, vol. 160(3), pages 821-838, February.
    20. Darko Skorin-Kapov, 2001. "On Cost Allocation in Hub-Like Networks," Annals of Operations Research, Springer, vol. 106(1), pages 63-78, September.
    21. Mohammad S. Roni & Sandra D. Eksioglu & Kara G. Cafferty & Jacob J. Jacobson, 2017. "A multi-objective, hub-and-spoke model to design and manage biofuel supply chains," Annals of Operations Research, Springer, vol. 249(1), pages 351-380, February.
    22. Lee McKnight & Joseph P. Bailey, 1997. "Global Internet Economics," Brazilian Electronic Journal of Economics, Department of Economics, Universidade Federal de Pernambuco, vol. 1(0), December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    3. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    4. Eric Bahel & Christian Trudeau, 2016. "From spanning trees to arborescences: new and extended cost sharing solutions," Working Papers 1601, University of Windsor, Department of Economics.
    5. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
    7. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    8. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
    9. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.
    10. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    11. Jayaswal, Sachin & Vidyarthi, Navneet, 2013. "Capacitated Multiple Allocation Hub Location with Service Level Constraints for Multiple Consignment Classes," IIMA Working Papers WP2013-11-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Hougaard, Jens Leth & Tvede, Mich, 2022. "Trouble comes in threes: Core stability in minimum cost connection networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 319-324.
    13. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    14. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    15. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    16. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    17. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    18. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    19. Eric Bahel & Christian Trudeau, 2017. "Minimum incoming cost rules for arborescences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 287-314, August.
    20. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2012. "Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels," Transportation Science, INFORMS, vol. 46(4), pages 439-459, November.

    More about this item

    Keywords

    hub network; cost allocation; core; Shapley value;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:74875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.