IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

GMM Estimation with Noncausal Instruments

  • Lanne, Markku
  • Saikkonen, Pentti

Lagged variables are often used as instruments when the generalized method of moments (GMM) is applied to time series data. We show that if these variables follow noncausal autoregressive processes, their lags are not valid instruments and the GMM estimator is inconsistent. Moreover, in this case, endogeneity of the instruments may not be revealed by the J-test of overidentifying restrictions that may be inconsistent and, as shown by simulations, its finite-sample power is, in general, low. Although our explicit results pertain to a simple linear regression, they can be easily generalized. Our empirical results indicate that noncausality is quite common among economic variables, making these problems highly relevant.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 23649.

in new window

Date of creation: Sep 2009
Date of revision:
Handle: RePEc:pra:mprapa:23649
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  2. Markku Lanne & Pentti Saikkonen, 2008. "Modeling Expectations with Noncausal Autoregressions," Economics Working Papers ECO2008/20, European University Institute.
  3. Hansen, Bruce E & West, Kenneth D, 2002. "Generalized Method of Moments and Macroeconomics," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 460-69, October.
  4. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
  5. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23649. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.