IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/121584.html
   My bibliography  Save this paper

Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism

Author

Listed:
  • Galychyn, Oleksandr

Abstract

The thesis discusses the importance of sustainable urban management, considering the expected increase in urban populations to 70% by 2050. This growth will lead to greater land use and emissions, adversely affecting ecosystems and human health. Sustainable urban management should adopt a systemic perspective, viewing cities as socio-ecological systems with complex interactions between humans and nature. This involves shifting from traditional urban metabolism models to network models that reveal internal city processes. The theoretical framework combines Ecological Economics and Industrial Ecology through network science. A bibliometric analysis of global literature on urban metabolism identified new research areas. The empirical part integrates environmental accounting and network science to assess environmental costs, efficiency, self-sufficiency, and sectoral impacts in urban systems, aligning with Sustainable Development Goals 11 and 12. A case study in Vienna revealed that mining and agriculture receive little investment, with weaknesses in the urban metabolic system's hierarchy, particularly in wholesale, retail, and energy sectors. An emergy-based evaluation highlighted the larger environmental footprint of agricultural products. A multicriteria approach combining input-output and emergy accounting methods is suggested for a comprehensive understanding of socio-ecological interactions, addressing the limitations of single criteria approaches to urban metabolism.

Suggested Citation

  • Galychyn, Oleksandr, 2022. "Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism," MPRA Paper 121584, University Library of Munich, Germany, revised 11 May 2022.
  • Handle: RePEc:pra:mprapa:121584
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/121584/1/MPRA_paper_121584.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    2. Justin Kitzes, 2013. "An Introduction to Environmentally-Extended Input-Output Analysis," Resources, MDPI, vol. 2(4), pages 1-15, September.
    3. Quentin Couix, 2019. "Natural resources in the theory of production: the Georgescu-Roegen/Daly versus Solow/Stiglitz controversy," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 26(6), pages 1341-1378, November.
    4. Hannon, Bruce & Costanza, Robert & Herendeen, Robert A., 1986. "Measures of energy cost and value in ecosystems," Journal of Environmental Economics and Management, Elsevier, vol. 13(4), pages 391-401, December.
    5. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    6. Paul A. Sandifer & Ariana E. Sutton‐Grier, 2014. "Connecting stressors, ocean ecosystem services, and human health," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 157-167, August.
    7. Ayres, Robert U., 2004. "On the life cycle metaphor: where ecology and economics diverge," Ecological Economics, Elsevier, vol. 48(4), pages 425-438, April.
    8. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    9. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    10. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    11. Pelenc, Jérôme & Ballet, Jérôme, 2015. "Strong sustainability, critical natural capital and the capability approach," Ecological Economics, Elsevier, vol. 112(C), pages 36-44.
    12. Kalt, Gerald & Kaufmann, Lisa & Kastner, Thomas & Krausmann, Fridolin, 2021. "Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material," Ecological Economics, Elsevier, vol. 188(C).
    13. Alberto Ruiz‐Villaverde, 2019. "Editor’s Introduction: The Growing Failure of the Neoclassical Paradigm in Economics," American Journal of Economics and Sociology, Wiley Blackwell, vol. 78(1), pages 13-34, January.
    14. Marie-France Cattin & Louis-Félix Bersier & Carolin Banašek-Richter & Richard Baltensperger & Jean-Pierre Gabriel, 2004. "Phylogenetic constraints and adaptation explain food-web structure," Nature, Nature, vol. 427(6977), pages 835-839, February.
    15. Spash, Clive L., 2021. "The History of Pollution ‘Externalities’ in Economic Thought," SRE-Discussion Papers 2021/01, WU Vienna University of Economics and Business.
    16. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    17. Häyhä, Tiina & Franzese, Pier Paolo, 2014. "Ecosystem services assessment: A review under an ecological-economic and systems perspective," Ecological Modelling, Elsevier, vol. 289(C), pages 124-132.
    18. Christensen, Paul P., 1989. "Historical roots for ecological economics -- Biophysical versus allocative approaches," Ecological Economics, Elsevier, vol. 1(1), pages 17-36, February.
    19. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    20. Li, Jizhe & Huang, Guohe & Liu, Lirong, 2018. "Ecological network analysis for urban metabolism and carbon emissions based on input-output tables: A case study of Guangdong province," Ecological Modelling, Elsevier, vol. 383(C), pages 118-126.
    21. Nikolay I. Didenko & Yuri S. Klochkov & Djamilia F. Skripnuk, 2018. "Ecological Criteria for Comparing Linear and Circular Economies," Resources, MDPI, vol. 7(3), pages 1-17, August.
    22. Zhan-Ming Chen & Stephanie Ohshita & Manfred Lenzen & Thomas Wiedmann & Magnus Jiborn & Bin Chen & Leo Lester & Dabo Guan & Jing Meng & Shiyun Xu & Guoqian Chen & Xinye Zheng & JinJun Xue & Ahmed Alsa, 2018. "Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    23. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    24. Daly, Herman E., 1992. "Allocation, distribution, and scale: towards an economics that is efficient, just, and sustainable," Ecological Economics, Elsevier, vol. 6(3), pages 185-193, December.
    25. Ernest Frimpong Asamoah & Lixiao Zhang & Sai Liang & Mingyue Pang & Shoujuan Tang, 2017. "Emergy Perspectives on the Environmental Performance and Sustainability of Small-Scale Gold Production Systems in Ghana," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    26. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    27. Malghan, Deepak, 2010. "On the relationship between scale, allocation, and distribution," Ecological Economics, Elsevier, vol. 69(11), pages 2261-2270, September.
    28. Shaoqing Chen & Bin Chen & Kuishuang Feng & Zhu Liu & Neil Fromer & Xianchun Tan & Ahmed Alsaedi & Tasawar Hayat & Helga Weisz & Hans Joachim Schellnhuber & Klaus Hubacek, 2020. "Physical and virtual carbon metabolism of global cities," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    29. Antero Honkasalo, 1998. "Entropy, exergy and steady-state economy," Sustainable Development, John Wiley & Sons, Ltd., vol. 6(3), pages 130-142.
    30. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    31. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    32. Niccolucci, Valentina & Pulselli, Federico M. & Tiezzi, Enzo, 2007. "Strengthening the threshold hypothesis: Economic and biophysical limits to growth," Ecological Economics, Elsevier, vol. 60(4), pages 667-672, February.
    33. Kent Klitgaard, 2020. "Sustainability as an Economic Issue: A BioPhysical Economic Perspective," Sustainability, MDPI, vol. 12(1), pages 1-21, January.
    34. Manfroni, Michele & Velasco-Fernández, Raúl & Pérez-Sánchez, Laura & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The profile of time allocation in the metabolic pattern of society: An internal biophysical limit to economic growth," Ecological Economics, Elsevier, vol. 190(C).
    35. Halnes, Geir & Fath, Brian D. & Liljenström, Hans, 2007. "The modified niche model: Including detritus in simple structural food web models," Ecological Modelling, Elsevier, vol. 208(1), pages 9-16.
    36. Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
    37. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    38. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
    39. Clara Lenk & Rosalie Arendt & Vanessa Bach & Matthias Finkbeiner, 2021. "Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    40. Tan, Ling Min & Arbabi, Hadi & Brockway, Paul E. & Densley Tingley, Danielle & Mayfield, Martin, 2019. "An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis," Applied Energy, Elsevier, vol. 254(C).
    41. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    42. Li, Linjun & Lu, Hongfang & Campbell, Daniel E. & Ren, Hai, 2010. "Emergy algebra: Improving matrix methods for calculating transformities," Ecological Modelling, Elsevier, vol. 221(3), pages 411-422.
    43. Helmut Haberl, 2001. "The Energetic Metabolism of Societies: Part II: Empirical Examples," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 71-88, April.
    44. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    45. Patterson, Murray, 2014. "Evaluation of matrix algebra methods for calculating transformities from ecological and economic network data," Ecological Modelling, Elsevier, vol. 271(C), pages 72-82.
    46. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    47. Xue Wan & Xiaoning Yang & Quaner Wen & Jun Gang & Lu Gan, 2020. "Sustainable Development of Industry–Environmental System Based on Resilience Perspective," IJERPH, MDPI, vol. 17(2), pages 1-23, January.
    48. Saladini, Fabrizio & Gopalakrishnan, Varsha & Bastianoni, Simone & Bakshi, Bhavik R., 2018. "Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems," Ecosystem Services, Elsevier, vol. 30(PB), pages 257-266.
    49. Ekins, Paul & Simon, Sandrine & Deutsch, Lisa & Folke, Carl & De Groot, Rudolf, 2003. "A framework for the practical application of the concepts of critical natural capital and strong sustainability," Ecological Economics, Elsevier, vol. 44(2-3), pages 165-185, March.
    50. Thomas O. Wiedmann & Guangwu Chen & John Barrett, 2016. "The Concept of City Carbon Maps: A Case Study of Melbourne, Australia," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 676-691, August.
    51. Baird, Dan & Fath, Brian D. & Ulanowicz, Robert E. & Asmus, Harald & Asmus, Ragnhild, 2009. "On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3465-3471.
    52. Jianjian He & Pengyan Zhang, 2018. "Evaluating the Coordination of Industrial-Economic Development Based on Anthropogenic Carbon Emissions in Henan Province, China," IJERPH, MDPI, vol. 15(9), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    2. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    3. Oleksandr Galychyn & B.D. Fath & D. Wiedenhofer & E. Buonocore & P.P. Franzese, 2024. "An urban emergy footprint: Comparing supply- and use-extended input-output models for the case of Vienna, Austria," Post-Print hal-04507173, HAL.
    4. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    5. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    7. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    8. Linlin Xia & Jianfeng Wei & Ruwei Wang & Lei Chen & Yan Zhang & Zhifeng Yang, 2022. "Exploring Potential Ways to Reduce the Carbon Emission Gap in an Urban Metabolic System: A Network Perspective," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    9. Farreny, Ramon & Gabarrell, Xavier & Rieradevall, Joan, 2008. "Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach," Energy Policy, Elsevier, vol. 36(6), pages 1957-1968, June.
    10. Hubacek, Klaus & van den Bergh, Jeroen C.J.M., 2006. "Changing concepts of 'land' in economic theory: From single to multi-disciplinary approaches," Ecological Economics, Elsevier, vol. 56(1), pages 5-27, January.
    11. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
    12. Richters, Oliver, 2015. "Integrating Energy Use into Macroeconomic Stock-Flow Consistent Models," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 154764, March.
    13. Huang, Shu-Li & Lee, Chun-Lin & Chen, Chia-Wen, 2006. "Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 166-196.
    14. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    15. Fath, Brian D. & Scharler, Ursula M. & Ulanowicz, Robert E. & Hannon, Bruce, 2007. "Ecological network analysis: network construction," Ecological Modelling, Elsevier, vol. 208(1), pages 49-55.
    16. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    17. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    18. Zhicheng Lai & Lei Li & Zhuomin Tao & Tao Li & Xiaoting Shi & Jialing Li & Xin Li, 2023. "Spatio-Temporal Evolution and Influencing Factors of Ecological Well-Being Performance from the Perspective of Strong Sustainability: A Case Study of the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    19. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    20. Cusso, Xavier & Garrabou, Ramon & Tello, Enric, 2006. "Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use," Ecological Economics, Elsevier, vol. 58(1), pages 49-65, June.

    More about this item

    Keywords

    input-output analysis; multi-criteria assessment; emergy accounting; ecological network analysis; urban metabolism;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • Y40 - Miscellaneous Categories - - Dissertations - - - Dissertations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:121584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.