IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v339y2016icp92-95.html
   My bibliography  Save this article

The geobiosphere emergy baseline: A synthesis

Author

Listed:
  • Brown, Mark T.
  • Campbell, Daniel E.
  • De Vilbiss, Christopher
  • Ulgiati, Sergio

Abstract

The concept of emergy defined as the available energy (or exergy) of one form used up directly and indirectly to produce an item or action (Odum, Environmental Accounting Emergy and Environmental Decision Making, John Wiley & Sons, Inc., 1996) requires the specification of a uniform solar equivalent exergy reference, or geobiosphere emergy baseline (GEB). Three primary exergy sources of different origins interact to drive processes within the geobiosphere. Each of these sources are expressed in solar equivalent exergy from which, all other forms of energy can be computed, so that they may be expressed as emergy in units of solar emjoules. If emergy practitioners reference their work to a single agreed-upon baseline, then all research products resulting from the application of the emergy approach will be inherently consistent and valid comparisons can then be made easily. In this paper, we synthesize information from three new calculation procedures of the emergy baseline for the geobiosphere and propose a unified solution.

Suggested Citation

  • Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
  • Handle: RePEc:eee:ecomod:v:339:y:2016:i:c:p:92-95
    DOI: 10.1016/j.ecolmodel.2016.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, Alicia & Valero, Antonio & Martínez, Amaya, 2010. "Inventory of the exergy resources on earth including its mineral capital," Energy, Elsevier, vol. 35(2), pages 989-995.
    2. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    3. Szargut, Jan T, 2003. "Anthropogenic and natural exergy losses (exergy balance of the Earth’s surface and atmosphere)," Energy, Elsevier, vol. 28(11), pages 1047-1054.
    4. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    5. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    6. Brown, Mark T. & Ulgiati, Sergio, 2016. "Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline," Ecological Modelling, Elsevier, vol. 339(C), pages 126-132.
    7. De Vilbiss, C. & Brown, M.T. & Siegel, E. & Arden, S., 2016. "Computing the geobiosphere emergy baseline: A novel approach," Ecological Modelling, Elsevier, vol. 339(C), pages 133-139.
    8. Siegel, Eric & Brown, Mark T. & De Vilbiss, Chris & Arden, Sam, 2016. "Calculating solar equivalence ratios of the four major heat-producing radiogenic isotopes in the Earth's crust and mantle," Ecological Modelling, Elsevier, vol. 339(C), pages 140-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siegel, Eric & Brown, Mark T. & De Vilbiss, Chris & Arden, Sam, 2016. "Calculating solar equivalence ratios of the four major heat-producing radiogenic isotopes in the Earth's crust and mantle," Ecological Modelling, Elsevier, vol. 339(C), pages 140-147.
    2. Mellino, Salvatore & Ripa, Maddalena & Zucaro, Amalia & Ulgiati, Sergio, 2014. "An emergy–GIS approach to the evaluation of renewable resource flows: A case study of Campania Region, Italy," Ecological Modelling, Elsevier, vol. 271(C), pages 103-112.
    3. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    4. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    5. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    6. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    7. Jia He & Yi Li & Lianjun Zhang & Junyin Tan & Chuanhao Wen, 2021. "A County-Scale Spillover Ecological Value Compensation Standard of Ecological Barrier Area in China: Based on an Extended Emergy Analysis," Agriculture, MDPI, vol. 11(12), pages 1-26, November.
    8. De Vilbiss, C. & Brown, M.T. & Siegel, E. & Arden, S., 2016. "Computing the geobiosphere emergy baseline: A novel approach," Ecological Modelling, Elsevier, vol. 339(C), pages 133-139.
    9. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    10. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    11. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    12. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    13. Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
    14. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    15. Lee, Dong Joo & Brown, Mark T., 2021. "Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach," Ecological Modelling, Elsevier, vol. 439(C).
    16. Zhicheng Gao & Rongjin Wan & Qian Ye & Weiguo Fan & Shihui Guo & Sergio Ulgiati & Xiaobin Dong, 2020. "Typhoon Disaster Risk Assessment Based on Emergy Theory: A Case Study of Zhuhai City, Guangdong Province, China," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    17. Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    18. Brown, Mark T. & Ulgiati, Sergio, 2016. "Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline," Ecological Modelling, Elsevier, vol. 339(C), pages 126-132.
    19. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    20. Chen, Yangfan & Zhang, Xiaohong, 2021. "Investigating the interactions between Chinese economic growth, energy consumption and its air environmental cost during 1989–2016 and forecasting their future trends," Ecological Modelling, Elsevier, vol. 461(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:339:y:2016:i:c:p:92-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.