IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/118171.html
   My bibliography  Save this paper

Subsidies for Close Substitutes: Evidence from Residential Solar Systems

Author

Listed:
  • Abajian, Alexander
  • Pretnar, Nick

Abstract

Policies promoting residential solar system adoption are designed assuming the associated generation displaces retail electricity purchases on a one-for-one basis. This assumption is not innocuous; electricity from residential solar systems is unlikely to be perfectly substitutable with grid electricity. We estimate a model of U.S. residential electricity demand allowing for spatial heterogeneity and imperfect substitution between forms of electricity to quantify the implications for green energy subsidization. We find subsidies inducing one kWh of residential solar electricity demand displace only 0.5 kWh of grid consumption. As an emissions reduction policy subsidies had national abatement costs of $332 per MTCO2 in 2018.

Suggested Citation

  • Abajian, Alexander & Pretnar, Nick, 2023. "Subsidies for Close Substitutes: Evidence from Residential Solar Systems," MPRA Paper 118171, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:118171
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/118171/1/abajian_pretnar_6_23_23.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven Sexton & A. Justin Kirkpatrick & Robert I. Harris & Nicholas Z. Muller, 2021. "Heterogeneous Solar Capacity Benefits, Appropriability, and the Costs of Suboptimal Siting," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(6), pages 1209-1244.
    2. Duncan S. Callaway & Meredith Fowlie & Gavin McCormick, 2018. "Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 39-75.
    3. Jonathan E. Hughes & Molly Podolefsky, 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 235-275.
    4. Ashley Langer & Derek Lemoine, 2022. "Designing Dynamic Subsidies to Spur Adoption of New Technologies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(6), pages 1197-1234.
    5. Jacquelyn Pless & Arthur A. van Benthem, 2019. "Pass-Through as a Test for Market Power: An Application to Solar Subsidies," American Economic Journal: Applied Economics, American Economic Association, vol. 11(4), pages 367-401, October.
    6. Kenneth Gillingham & Tsvetan Tsvetanov, 2019. "Hurdles and steps: Estimating demand for solar photovoltaics," Quantitative Economics, Econometric Society, vol. 10(1), pages 275-310, January.
    7. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    8. Marcello Graziano & Kenneth Gillingham, 2015. "Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment," Journal of Economic Geography, Oxford University Press, vol. 15(4), pages 815-839.
    9. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    10. Olivier De Groote & Frank Verboven, 2019. "Subsidies and Time Discounting in New Technology Adoption: Evidence from Solar Photovoltaic Systems," American Economic Review, American Economic Association, vol. 109(6), pages 2137-2172, June.
    11. Travis E. Dauwalter & Robert I. Harris, 2023. "Distributional Benefits of Rooftop Solar Capacity," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(2), pages 487-523.
    12. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    13. Severin Borenstein & James B. Bushnell, 2022. "Do Two Electricity Pricing Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency," American Economic Journal: Economic Policy, American Economic Association, vol. 14(4), pages 80-110, November.
    14. Kimberly S. Wolske & Kenneth T. Gillingham & P. Wesley Schultz, 2020. "Peer influence on household energy behaviours," Nature Energy, Nature, vol. 5(3), pages 202-212, March.
    15. Flowers, Mallory E. & Smith, Matthew K. & Parsekian, Ara W. & Boyuk, Dmitriy S. & McGrath, Jenna K. & Yates, Luke, 2016. "Climate impacts on the cost of solar energy," Energy Policy, Elsevier, vol. 94(C), pages 264-273.
    16. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    17. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    18. Kulmer, Veronika & Seebauer, Sebastian, 2019. "How robust are estimates of the rebound effect of energy efficiency improvements? A sensitivity analysis of consumer heterogeneity and elasticities," Energy Policy, Elsevier, vol. 132(C), pages 1-14.
    19. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    20. Arthur Lewbel, 1989. "Exact Aggregation and a Representative Consumer," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 104(3), pages 621-633.
    21. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    22. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sébastien Houde & Wenjun Wang, 2022. "The Incidence of the U.S.-China Solar Trade War," CER-ETH Economics working paper series 22/372, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.
    3. Axel Gautier & Julien Jacqmin, 2020. "PV adoption: the role of distribution tariffs under net metering," Journal of Regulatory Economics, Springer, vol. 57(1), pages 53-73, February.
    4. Germeshausen, Robert, 2016. "Effects of Attribute-Based Regulation on Technology Adoption - The Case of Feed-In Tariffs for Solar Photovoltaic," VfS Annual Conference 2016 (Augsburg): Demographic Change 145712, Verein für Socialpolitik / German Economic Association.
    5. Bryan Bollinger & Naim Darghouth & Kenneth Gillingham & Andres Gonzalez-Lira, 2023. "Valuing Technology Complementarities: Rooftop Solar and Energy Storage," NBER Working Papers 32003, National Bureau of Economic Research, Inc.
    6. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    7. Fabian Feger & Nicola Pavanini & Doina Radulescu, 2022. "Welfare and Redistribution in Residential Electricity Markets with Solar Power," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3267-3302.
    8. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    9. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    10. Corbett, Charles J. & Hershfield, Hal E. & Kim, Henry & Malloy, Timothy F. & Nyblade, Benjamin & Partie, Alison, 2022. "The role of place attachment and environmental attitudes in adoption of rooftop solar," Energy Policy, Elsevier, vol. 162(C).
    11. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    12. Nepal, Rabindra & Best, Rohan & Taylor, Madeline, 2023. "Strategies for reducing ethnic inequality in energy outcomes: A Nepalese example," Energy Economics, Elsevier, vol. 126(C).
    13. Arnold, Fabian & Jeddi, Samir & Sitzmann, Amelie, 2022. "How prices guide investment decisions under net purchasing — An empirical analysis on the impact of network tariffs on residential PV," Energy Economics, Elsevier, vol. 112(C).
    14. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    15. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    16. Li, Yumin, 2018. "Incentive pass-through in the California Solar Initiative – An analysis based on third-party contracts," Energy Policy, Elsevier, vol. 121(C), pages 534-541.
    17. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    18. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    19. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    20. Stefan Lamp, 2023. "Sunspots That Matter: The Effect of Weather on Solar Technology Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1179-1219, April.

    More about this item

    Keywords

    Residential PV systems; residential electricity demand; rebound effects; energy subsidies;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:118171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.