IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/972.html
   My bibliography  Save this paper

Structural relationships between cryptocurrency prices and monetary policy indicators

Author

Listed:
  • Jennifer Castle
  • Takamitsu Kurita

Abstract

The rapid expansion of the global cryptocurrency market raises the question of whether there are stable relationships between the prices of representative cryptocurrencies and economic indicators capturing expectations of future monetary policy. In this paper multivariate time-series analysis reveals a single but significant cointegrating relationship between cryptocurrencies and the term spread. This evidence reveals direct policy implications for the implementation of monetary policy allowing for the growing influence of digital assets. While the cointegrating linkage plays a critical role in modelling cryptocurrencies in sample, it contributes little to forecasting them out of sample, thus indicating potential efficiency in the digital currency market.

Suggested Citation

  • Jennifer Castle & Takamitsu Kurita, 2022. "Structural relationships between cryptocurrency prices and monetary policy indicators," Economics Series Working Papers 972, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:972
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:226b7043-4a1e-446d-9e5c-53a7936688a0
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giese, Julia V., 2008. "Level, Slope, Curvature: Characterising the Yield Curve in a Cointegrated VAR Model," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-20.
    2. Soren Johansen & Katarina Juselius, 2001. "Controlling Inflation in a Cointegrated Vector Autoregressive Model with an Application to US Data," Discussion Papers 01-03, University of Copenhagen. Department of Economics.
    3. Takamitsu Kurita & Bent Nielsen, 2019. "Partial Cointegrated Vector Autoregressive Models with Structural Breaks in Deterministic Terms," Econometrics, MDPI, vol. 7(4), pages 1-35, October.
    4. John Y. Campbell, 1995. "Some Lessons from the Yield Curve," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 129-152, Summer.
    5. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    6. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    7. Angelo Corelli, 2018. "Cryptocurrencies and Exchange Rates: A Relationship and Causality Analysis," Risks, MDPI, vol. 6(4), pages 1-11, October.
    8. Choi, Sangyup & Shin, Junhyeok, 2022. "Bitcoin: An inflation hedge but not a safe haven," Finance Research Letters, Elsevier, vol. 46(PB).
    9. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, December.
    10. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    11. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    12. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    13. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    14. Cheung, Yin-Wong & Lai, Kon S, 1993. "Finite-Sample Sizes of Johansen's Likelihood Ration Tests for Conintegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 55(3), pages 313-328, August.
    15. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    16. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    17. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    18. Grégory Claeys & Maria Demertzis & Konstantinos Efstathiou, 2018. "Cryptocurrencies and monetary policy," Policy Contributions 26557, Bruegel.
    19. Manuelli, Rodolfo E & Peck, James, 1990. "Exchange Rate Volatility in an Equilibrium Asset Pricing Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 31(3), pages 559-574, August.
    20. Wang, Gang-Jin & Xie, Chi & Wen, Danyan & Zhao, Longfeng, 2019. "When Bitcoin meets economic policy uncertainty (EPU): Measuring risk spillover effect from EPU to Bitcoin," Finance Research Letters, Elsevier, vol. 31(C).
    21. Pål Boug & Håvard Hungnes & Takamitsu Kurita, 2024. "The empirical modelling of house prices and debt revisited: a policy-oriented perspective," Empirical Economics, Springer, vol. 66(1), pages 369-404, January.
    22. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    23. Juselius, Katarina, 2006. "The Cointegrated VAR Model: Methodology and Applications," OUP Catalogue, Oxford University Press, number 9780199285679, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    3. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    4. Takamitsu Kurita & Patrick James, 2022. "The Canadian–US dollar exchange rate over the four decades of the post‐Bretton Woods float: An econometric study allowing for structural breaks," Metroeconomica, Wiley Blackwell, vol. 73(3), pages 856-883, July.
    5. Blake LeBaron, 2013. "Heterogeneous Agents and Long Horizon Features of Asset Prices," Working Papers 63, Brandeis University, Department of Economics and International Business School, revised Sep 2013.
    6. Neil R. Ericsson & Steven B. Kamin, 2008. "Constructive data mining: modeling Argentine broad money demand," International Finance Discussion Papers 943, Board of Governors of the Federal Reserve System (U.S.).
    7. Emerson Fernandes Marçal & Priscila Fernandes Ribeiro, 2011. "Levado pelos Fundamentos? Estimando o Desalinhamento Cambial Norte-Americano a partir de Técnicas de Cointegração," Discussion Papers 1674, Instituto de Pesquisa Econômica Aplicada - IPEA.
    8. Ahumada, H. & Cornejo, M., 2016. "Forecasting food prices: The case of corn, soybeans and wheat," International Journal of Forecasting, Elsevier, vol. 32(3), pages 838-848.
    9. Gök, Remzi & Bouri, Elie & Gemici, Eray, 2022. "Can Twitter-based economic uncertainty predict safe-haven assets under all market conditions and investment horizons?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    10. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    11. Neil Ericsson & Erica Reisman, 2012. "Evaluating a Global Vector Autoregression for Forecasting," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 18(3), pages 247-258, August.
    12. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    13. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, vol. 7(1), pages 1-24, January.
    14. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    15. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
    16. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    17. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).
    18. Gaetano D’Adamo, 2014. "Wage spillovers across sectors in Eastern Europe," Empirical Economics, Springer, vol. 47(2), pages 523-552, September.
    19. Pär Österholm, 2005. "The Taylor Rule: A Spurious Regression?," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
    20. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.