IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/esfpy_v1.html
   My bibliography  Save this paper

Reexamining an old story: uncovering the hidden small sample bias in AR(1) models

Author

Listed:
  • Dou, Zhiwei
  • Ariens, Sigert
  • Ceulemans, Eva
  • Lafit, Ginette

Abstract

The first order autoregressive [AR(1)] model is widely used to investigate psycholog- ical dynamics. This study focuses on the estimation and inference of the autoregressive (AR) effect in AR(1) models under a limited sample size—a common scenario in psy- chological research. State-of-the-art estimators of the autoregressive effect are known to be biased when sample sizes are small. We analytically demonstrate the causes and consequences of this small sample bias on the estimation of the AR effect, its variance, and the AR(1) model’s intercept, particularly when using OLS. In addition, we reviewed various bias correction methods proposed in the time series literature. A simulation study compares the OLS estimator with these correction methods in terms of estimation accuracy and inference. The main result indicates that the small sam- ple bias of the OLS estimator of the autoregressive effect is a consequence of limited information and correcting for this bias without more information always induces a bias-variance trade-off. Nevertheless, correction methods discussed in this research may offer improved statistical power under moderate sample sizes when the primary research goal is hypothesis testing.

Suggested Citation

  • Dou, Zhiwei & Ariens, Sigert & Ceulemans, Eva & Lafit, Ginette, 2025. "Reexamining an old story: uncovering the hidden small sample bias in AR(1) models," OSF Preprints esfpy_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:esfpy_v1
    DOI: 10.31219/osf.io/esfpy_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/685170b831fb60462ee7b773/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/esfpy_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jarociński, Marek & Marcet, Albert, 2019. "Priors about observables in vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(2), pages 238-255.
    2. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    3. Reinsel, Gregory C. & Cheang, Wai-Kwong, 2003. "Approximate ML and REML estimation for regression models with spatial or time series AR(1) noise," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 123-135, April.
    4. MacKinnon, James G. & Smith, Anthony A., 1995. "Approximate Bias Correction in Econometrics," Queen's Economics Department Working Papers 273323, Queen's University - Department of Economics.
    5. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    6. Jaume Arnau & Roser Bono, 2001. "Autocorrelation and Bias in Short Time Series: An Alternative Estimator," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(4), pages 365-387, November.
    7. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    8. Anna Mikusheva & Mikkel Sølvsten, 2025. "Linear regression with weak exogeneity," Quantitative Economics, Econometric Society, vol. 16(2), pages 367-403, May.
    9. Tom Engsted & Thomas Q. Pedersen, 2014. "Bias-Correction in Vector Autoregressive Models: A Simulation Study," Econometrics, MDPI, vol. 2(1), pages 1-27, March.
    10. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    11. Patterson, K. D., 2000. "Bias reduction in autoregressive models," Economics Letters, Elsevier, vol. 68(2), pages 135-141, August.
    12. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Jarocinski & Albert Marcet, 2015. "Contrasting Bayesian and Frequentist Approaches to Autoregressions: the Role of the Initial Condition," Working Papers 776, Barcelona School of Economics.
    2. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    3. Tom Engsted & Thomas Q. Pedersen, 2014. "Bias-Correction in Vector Autoregressive Models: A Simulation Study," Econometrics, MDPI, vol. 2(1), pages 1-27, March.
    4. Martin A. Carree, 2002. "Nearly Unbiased Estimationin Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 02-008/2, Tinbergen Institute.
    5. Kruse, Robinson & Kaufmann, Hendrik & Wegener, Christoph, 2018. "Bias-corrected estimation for speculative bubbles in stock prices," Economic Modelling, Elsevier, vol. 73(C), pages 354-364.
    6. Pere, Pekka, 2000. "Adjusted estimates and Wald statistics for the AR(1) model with constant," Journal of Econometrics, Elsevier, vol. 98(2), pages 335-363, October.
    7. K. D. Patterson, 2007. "Bias Reduction through First-order Mean Correction, Bootstrapping and Recursive Mean Adjustment," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-45.
    8. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    9. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    10. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    11. Martin A. Carree, 2002. "Nearly Unbiased Estimation in Dynamic Panel Data Models with Exogenous Variables," Tinbergen Institute Discussion Papers 02-007/2, Tinbergen Institute.
    12. MacKinnon, James G. & Smith, Anthony A., 1995. "Approximate Bias Correction in Econometrics," Queen's Economics Department Working Papers 273323, Queen's University - Department of Economics.
    13. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    14. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    15. Hisashi Tanizaki & Shigeyuki Hamori & Yoichi Matsubayashi, 2006. "On least-squares bias in the AR(p) models: Bias correction using the bootstrap methods," Statistical Papers, Springer, vol. 47(1), pages 109-124, January.
    16. Shawn Ni, 2007. "Excess Sensitivity in Consumption without Liquidity Constraint: Evidence from Monthly Household Panel Data," Working Papers 0714, Department of Economics, University of Missouri.
    17. Ni, Shawn & Seol, Youn, 2014. "New evidence on excess sensitivity of household consumption," Journal of Monetary Economics, Elsevier, vol. 63(C), pages 80-94.
    18. Sigrunn H. Sørbye & Pedro G. Nicolau & Håvard Rue, 2022. "Finite-sample properties of estimators for first and second order autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 577-598, October.
    19. Kruse, Yves Robinson & Kaufmann, Hendrik, 2015. "Bias-corrected estimation in mildly explosive autoregressions," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112897, Verein für Socialpolitik / German Economic Association.
    20. Jiang, Liang & Wang, Xiaohu & Yu, Jun, 2018. "New distribution theory for the estimation of structural break point in mean," Journal of Econometrics, Elsevier, vol. 205(1), pages 156-176.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:esfpy_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.