Asymmetry and Interdependence when Evaluating U.S. Energy Information Agency Forecasts
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Garratt, Anthony & Petrella, Ivan & Zhang, Yunyi, 2022. "Asymmetry and Interdependence when Evaluating U.S. Energy Information Agency Forecasts," MPRA Paper 114325, University Library of Munich, Germany.
References listed on IDEAS
- Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013.
"Forecasting the Price of Oil,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507,
Elsevier.
- Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
- Ron Alquist & Lutz Kilian & Robert J. Vigfusson, 2011. "Forecasting the price of oil," International Finance Discussion Papers 1022, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Alquist, Ron & Vigfusson, Robert J., 2011. "Forecasting the Price of Oil," CEPR Discussion Papers 8388, C.E.P.R. Discussion Papers.
- Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2019.
"Real‐time forecast combinations for the oil price,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 456-462, April.
- Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2018. "Real-time forecast combinations for the oil price," CAMA Working Papers 2018-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Anthony Garratt & Shaun P. Vahey & Ynuyi Zhang, 2018. "Real-time Forecast Combinations for the Oil Price," National Institute of Economic and Social Research (NIESR) Discussion Papers 494, National Institute of Economic and Social Research.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- James D. Hamilton, 2009.
"Causes and Consequences of the Oil Shock of 2007-08,"
Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
- James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," NBER Working Papers 15002, National Bureau of Economic Research, Inc.
- James D. Hamilton, 2010. "Causes and consequences of the oil shock of 2007–08," FRB Atlanta CQER Working Paper 2009-02, Federal Reserve Bank of Atlanta.
- Pindyck, Robert S, 1980. "Uncertainty and Exhaustible Resource Markets," Journal of Political Economy, University of Chicago Press, vol. 88(6), pages 1203-1225, December.
- Auffhammer, Maximilian, 2007.
"The rationality of EIA forecasts under symmetric and asymmetric loss,"
Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
- Auffhammer, Maximilian, 2005. "The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2ts415ts, Department of Agricultural & Resource Economics, UC Berkeley.
- Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014.
"Are there gains from pooling real-time oil price forecasts?,"
Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
- Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2014. "Are There Gains from Pooling Real-Time Oil Price Forecasts?," Staff Working Papers 14-46, Bank of Canada.
- Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
- Pesaran, M. Hashem & Timmermann, Allan, 2009.
"Testing Dependence Among Serially Correlated Multicategory Variables,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
- M. Hashem Pesaran & Allan Timmermann, 2006. "Testing Dependence among Serially Correlated Multi-category Variables," CESifo Working Paper Series 1770, CESifo.
- Pesaran, M.H. & Timmermann, A., 2006. "Testing Dependence Among Serially Correlated Multi-category Variables," Cambridge Working Papers in Economics 0648, Faculty of Economics, University of Cambridge.
- Pesaran, M. Hashem & Timmermann, Allan, 2006. "Testing Dependence among Serially Correlated Multi-Category Variables," IZA Discussion Papers 2196, Institute of Labor Economics (IZA).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Sanders, Dwight R. & Manfredo, Mark R. & Boris, Keith, 2008. "Accuracy and efficiency in the U.S. Department of Energy's short-term supply forecasts," Energy Economics, Elsevier, vol. 30(3), pages 1192-1207, May.
- Mamatzakis, E. & Koutsomanoli-Filippaki, A., 2014. "Testing the rationality of DOE's energy price forecasts under asymmetric loss preferences," Energy Policy, Elsevier, vol. 68(C), pages 567-575.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Lady, George M., 2010. "Evaluating long term forecasts," Energy Economics, Elsevier, vol. 32(2), pages 450-457, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Garratt, Anthony & Petrella, Ivan & Zhang, Yunyi, 2023.
"Asymmetry and interdependence when evaluating U.S. Energy Information Administration forecasts,"
Energy Economics, Elsevier, vol. 121(C).
- Garratt, Anthony & Petrella, Ivan & Zhang, Yunyi, 2022. "Asymmetry and Interdependence when Evaluating U.S. Energy Information Administration Forecasts," MPRA Paper 115559, University Library of Munich, Germany.
- Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017.
"Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
- Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2015. "Inside the crystal ball: New approaches to predicting the gasoline price at the pump," CFS Working Paper Series 500, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2015. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CEPR Discussion Papers 10362, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2016. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CESifo Working Paper Series 5759, CESifo.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Amor Aniss Benmoussa & Reinhard Ellwanger & Stephen Snudden, 2020. "The New Benchmark for Forecasts of the Real Price of Crude Oil," Staff Working Papers 20-39, Bank of Canada.
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
- Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2019.
"Real‐time forecast combinations for the oil price,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 456-462, April.
- Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2018. "Real-time forecast combinations for the oil price," CAMA Working Papers 2018-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Anthony Garratt & Shaun P. Vahey & Ynuyi Zhang, 2018. "Real-time Forecast Combinations for the Oil Price," National Institute of Economic and Social Research (NIESR) Discussion Papers 494, National Institute of Economic and Social Research.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022.
"Energy Markets and Global Economic Conditions,"
The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," Working Papers 2020_08, Business School - Economics, University of Glasgow.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," NBER Working Papers 27001, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Korobilis, Dimitris & Lee, Thomas K., 2020. "Energy Markets and Global Economic Conditions," CEPR Discussion Papers 14580, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," CESifo Working Paper Series 8282, CESifo.
- Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
- Snudden, Stephen, 2018. "Targeted growth rates for long-horizon crude oil price forecasts," International Journal of Forecasting, Elsevier, vol. 34(1), pages 1-16.
- Kilian, Lutz & Baumeister, Christiane, 2014.
"A General Approach to Recovering Market Expectations from Futures Prices With an Application to Crude Oil,"
CEPR Discussion Papers
10162, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2016. "A General Approach to Recovering Market Expectations from Futures Prices with an Application to Crude Oil," Staff Working Papers 16-18, Bank of Canada.
- Christiane Baumeister & Lutz Kilian, 2016. "A General Approach to Recovering Market Expectations from Futures Prices with an Application to Crude Oil," CESifo Working Paper Series 5782, CESifo.
- Baumeister, Christiane & Kilian, Lutz, 2014. "A general approach to recovering market expectations from futures prices with an application to crude oil," CFS Working Paper Series 466, Center for Financial Studies (CFS).
- Xuluo Yin & Jiangang Peng & Tian Tang, 2018. "Improving the Forecasting Accuracy of Crude Oil Prices," Sustainability, MDPI, vol. 10(2), pages 1-9, February.
- Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
More about this item
Keywords
EIA forecasts; oil market; forecast rationality; non-separable loss; asymmetric loss;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2022-10-24 (Energy Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:niesrd:541. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library & Information Manager (email available below). General contact details of provider: https://edirc.repec.org/data/niesruk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.