IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/14-46.html
   My bibliography  Save this paper

Are There Gains from Pooling Real-Time Oil Price Forecasts?

Author

Listed:
  • Christiane Baumeister
  • Lutz Kilian
  • Thomas K. Lee

Abstract

The answer as to whether there are gains from pooling real-time oil price forecasts depends on the objective. The approach of combining five of the leading forecasting models with equal weights dominates the strategy of selecting one model and using it for all horizons up to two years. Even more accurate forecasts, however, are obtained when allowing the forecast combinations to vary across forecast horizons. While the latter approach is not always more accurate than selecting the single mostaccurate forecasting model by horizon, its accuracy can be shown to be much more stable over time. The mean-squared prediction error of real-time pooled forecasts is between 3% and 29% lower than that of the no-change forecast and its directional accuracy as high as 73%. Our results are robust to alternative oil price measures and apply to monthly as well as quarterly forecasts. We illustrate how forecast pooling may be used to produce real-time forecasts of the real and the nominal price of oil in a format consistent with that employed by the U.S. Energy Information Administration in releasing its short-term oil price forecasts, and we compare these forecasts duringkey historical episodes.

Suggested Citation

  • Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2014. "Are There Gains from Pooling Real-Time Oil Price Forecasts?," Staff Working Papers 14-46, Bank of Canada.
  • Handle: RePEc:bca:bocawp:14-46
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2014/10/wp2014-46.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cup:macdyn:v:22:y:2018:i:03:p:562-580_00 is not listed on IDEAS
    2. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    3. Baumeister, Christiane & Kilian, Lutz & Zhou, Xiaoqing, 2013. "Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis," CEPR Discussion Papers 9572, C.E.P.R. Discussion Papers.
    4. Sanders, Dwight R. & Manfredo, Mark R. & Boris, Keith, 2009. "Evaluating information in multiple horizon forecasts: The DOE's energy price forecasts," Energy Economics, Elsevier, vol. 31(2), pages 189-196.
    5. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    6. Shiu-Sheng Chen, 2014. "Forecasting Crude Oil Price Movements With Oil-Sensitive Stocks," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 830-844, April.
    7. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    8. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    9. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 869-889, August.
    10. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    11. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
    12. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, Elsevier.
    13. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    14. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2, May.
    15. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    16. Christiane Baumeister & Lutz Kilian, 2014. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 62(1), pages 119-145, April.
    17. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    18. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    19. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1, May.
    20. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Econometric and statistical methods; International topics;

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:14-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/bocgvca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.