IDEAS home Printed from https://ideas.repec.org/p/nsr/escoed/escoe-dp-2021-10.html
   My bibliography  Save this paper

UK Economic Conditions during the Pandemic: Assessing the Economy using ONS Faster Indicators

Author

Listed:
  • George Kapetanios
  • Fotis Papailias

Abstract

This paper constructs a coincident indicator for the UK employing–for the first time–a novel set of "faster" indicators recently published by the Office for National Statistics. Most of these variables were first released during the COVID-19 pandemic with the aim of facilitating economics and social research by more timely indicators. The empirical evidence suggests that a coincident indicator based on a novel weekly dataset successfully captures the economic conditions in real-time. We further use this indicator in an out-of-sample macroeconomic nowcasting exercise targeting monthly economic growth, prices and retail sales.

Suggested Citation

  • George Kapetanios & Fotis Papailias, 2021. "UK Economic Conditions during the Pandemic: Assessing the Economy using ONS Faster Indicators," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2021-10, Economic Statistics Centre of Excellence (ESCoE).
  • Handle: RePEc:nsr:escoed:escoe-dp-2021-10
    as

    Download full text from publisher

    File URL: https://escoe-website.s3.amazonaws.com/wp-content/uploads/2021/08/10123848/ESCoE-DP-2021-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001. "An automatic leading indicator of economic activity: forecasting GDP growth for European countries," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
    2. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    3. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    4. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    5. Scott Brave & R. Andrew Butters, 2012. "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 191-239, June.
    6. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    7. Camba-Méndez, Gonzalo & Kapetanios, George & Papailias, Fotis & Weale, Martin R., 2015. "An automatic leading indicator, variable reduction and variable selection methods using small and large datasets: Forecasting the industrial production growth for euro area economies," Working Paper Series 1773, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Kapetanios & Fotis Papailias, 2022. "Real Time Indicators During the COVID-19 Pandemic Individual Predictors & Selection," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-15, Economic Statistics Centre of Excellence (ESCoE).
    2. George Kapetanios & Fotis Papailias, 2022. "An Evaluation Framework for Targeted Indicators Aggregates vs. Disaggregates," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-17, Economic Statistics Centre of Excellence (ESCoE).
    3. George Kapetanios & Fotis Papailias, 2022. "A Quality Assessment Framework for Maintaining & Publishing New Indicators," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-18, Economic Statistics Centre of Excellence (ESCoE).
    4. Alex Botsis & Kevin Lee, 2022. "Nowcasting Using Firm-Level Survey Data; Tracking UK Output Fluctuations and Recessionary Events," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-20, Economic Statistics Centre of Excellence (ESCoE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    2. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
    3. Pavel Vidal Alejandro & Lya Paola Sierra Suárez & Johana Sanabria Dominguez & Jaime Andres Collazos Rodríguez, 2015. "Indicador mensual de actividad económica (IMAE) para el Valle del Cauca," Borradores de Economia 900, Banco de la Republica de Colombia.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 2008 - 2015 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    7. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    8. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    9. Martina Hengge & Seton Leonard, 2017. "Factor Models for Non-Stationary Series: Estimates of Monthly U.S. GDP," IHEID Working Papers 13-2017, Economics Section, The Graduate Institute of International Studies.
    10. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
    11. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    12. Daniel Grenouilleau, 2004. "A sorted leading indicators dynamic (SLID) factor model for short-run euro-area GDP forecasting," European Economy - Economic Papers 2008 - 2015 219, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Abberger, Klaus & Graff, Michael & Siliverstovs, Boriss & Sturm, Jan-Egbert, 2018. "Using rule-based updating procedures to improve the performance of composite indicators," Economic Modelling, Elsevier, vol. 68(C), pages 127-144.
    14. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    15. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    16. Alkhareif, Ryadh M. & Barnett, William A., 2020. "Nowcasting Real GDP for Saudi Arabia," MPRA Paper 104278, University Library of Munich, Germany.
    17. Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
    18. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    19. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    20. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.

    More about this item

    Keywords

    coincident indicators; covid-19; factor models; nowcasting;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:escoed:escoe-dp-2021-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ESCoE Centre Manager (email available below). General contact details of provider: https://edirc.repec.org/data/escoeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.