IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20151773.html
   My bibliography  Save this paper

An automatic leading indicator, variable reduction and variable selection methods using small and large datasets: Forecasting the industrial production growth for euro area economies

Author

Listed:
  • Camba-Méndez, Gonzalo
  • Kapetanios, George
  • Papailias, Fotis
  • Weale, Martin R.

Abstract

This paper assesses the forecasting performance of various variable reduction and variable selection methods. A small and a large set of wisely chosen variables are used in forecasting the industrial production growth for four Euro Area economies. The results indicate that the Automatic Leading Indicator (ALI) model performs well compared to other variable reduction methods in small datasets. However, Partial Least Squares and variable selection using heuristic optimisations of information criteria along with the ALI could be used in model averaging methodologies. JEL Classification: C11, C32, C52

Suggested Citation

  • Camba-Méndez, Gonzalo & Kapetanios, George & Papailias, Fotis & Weale, Martin R., 2015. "An automatic leading indicator, variable reduction and variable selection methods using small and large datasets: Forecasting the industrial production growth for euro area economies," Working Paper Series 1773, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20151773
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1773.en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    2. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    3. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    4. Pérez-Quirós, Gabriel & Camacho, Máximo & Alvarez, Rocio, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Kapetanios & Fotis Papailias, 2021. "UK Economic Conditions during the Pandemic: Assessing the Economy using ONS Faster Indicators," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2021-10, Economic Statistics Centre of Excellence (ESCoE).
    2. Klaus Abberger & Michael Graff & Oliver Müller & Jan-Egbert Sturm, 2022. "Composite global indicators from survey data: the Global Economic Barometers," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 158(3), pages 917-945, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evren Erdogan Cosar & Sevim Kosem & Cagri Sarikaya, 2013. "Do We Really Need Filters In Estimating Output Gap? : Evidence From Turkey," Working Papers 1333, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    2. William Barnett & Marcelle Chauvetz & Danilo Leiva-Leonx, 2014. "Real-Time Nowcasting Nominal GDP Under Structural Break," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201313, University of Kansas, Department of Economics, revised Feb 2014.
    3. Germán López, 2015. "Forecast Accuracy of Small and Large Scale Dynamic Factor Models in Developing Economies," Working Papers. Serie AD 2015-03, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    4. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    5. Maximo Camacho & Jaime Martinez-Martin, 2014. "Real-time forecasting US GDP from small-scale factor models," Empirical Economics, Springer, vol. 47(1), pages 347-364, August.
    6. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    7. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    8. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    9. Francis X. Diebold, 2020. "Real-Time Real Economic Activity:Exiting the Great Recession and Entering the Pandemic Recession," PIER Working Paper Archive 20-023, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Pérez-Quirós, Gabriel & Camacho, Máximo & Alvarez, Rocio, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
    11. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    12. Barnett, William A. & Chauvet, Marcelle & Leiva-Leon, Danilo, 2016. "Real-time nowcasting of nominal GDP with structural breaks," Journal of Econometrics, Elsevier, vol. 191(2), pages 312-324.
    13. Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.
    14. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
    15. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    16. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    17. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    18. Marcos Dal Bianco & Jaime Martinez-Martín & Maximo Camacho, 2013. "Short-Run Forecasting of Argentine GDP Growth," Working Papers 1314, BBVA Bank, Economic Research Department.
    19. Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
    20. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.

    More about this item

    Keywords

    Bayesian shrinkage regression; dynamic factor model; euro area; forecasting; Kalman filter; partial least squares;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20151773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.