IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/18056.html
   My bibliography  Save this paper

Estimating Person-Centered Treatment (PeT) Effects Using Instrumental Variables

Author

Listed:
  • Anirban Basu

Abstract

This paper builds on the methods of local instrumental variables developed by Heckman and Vytlacil (1999, 2001, 2005) to estimate person-centered treatment (PeT) effects that are conditioned on the person's observed characteristics and averaged over the potential conditional distribution of unobserved characteristics that lead them to their observed treatment choices. PeT effects are more individualized than conditional treatment effects from a randomized setting with the same observed characteristics. PeT effects can be easily aggregated to construct any of the mean treatment effect parameters and, more importantly, are well-suited to comprehend individual-level treatment effect heterogeneity. The paper presents the theory behind PeT effects, studies their finite-sample properties using simulations and presents a novel analysis of treatment evaluation in health care.

Suggested Citation

  • Anirban Basu, 2012. "Estimating Person-Centered Treatment (PeT) Effects Using Instrumental Variables," NBER Working Papers 18056, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:18056
    Note: EH TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w18056.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    2. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    3. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    4. Basu, Anirban, 2011. "Economics of individualization in comparative effectiveness research and a basis for a patient-centered health care," Journal of Health Economics, Elsevier, vol. 30(3), pages 549-559, May.
    5. Anirban Basu, 2009. "Individualization at the Heart of Comparative Effectiveness Research: The Time for i-CER Has Come," Medical Decision Making, , vol. 29(6), pages 9-11, November.
    6. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: An application in breast cancer patients," Health, Econometrics and Data Group (HEDG) Working Papers 07/07, HEDG, c/o Department of Economics, University of York.
    7. Meltzer, D. & Egleston, B. & Abdalla, I., 2001. "Patterns of prostate cancer treatment by clinical stage and age," American Journal of Public Health, American Public Health Association, vol. 91(1), pages 126-128.
    8. Garber, Alan M. & Phelps, Charles E., 1997. "Economic foundations of cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 16(1), pages 1-31, February.
    9. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    10. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    11. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    12. Heckman, James, 2001. "Accounting for Heterogeneity, Diversity and General Equilibrium in Evaluating Social Programmes," Economic Journal, Royal Economic Society, vol. 111(475), pages 654-699, November.
    13. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    14. Andrew M. Jones (ed.), 2006. "The Elgar Companion to Health Economics," Books, Edward Elgar Publishing, number 3572.
    15. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    16. Amitabh Chandra & Douglas O. Staiger, 2007. "Productivity Spillovers in Health Care: Evidence from the Treatment of Heart Attacks," Journal of Political Economy, University of Chicago Press, vol. 115(1), pages 103-140.
    17. Hsiao,Cheng & Morimune,Kimio & Powell,James L. (ed.), 2001. "Nonlinear Statistical Modeling," Cambridge Books, Cambridge University Press, number 9780521662468, September.
    18. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basu Anirban, 2013. "Personalized Medicine in the Context of Comparative Effectiveness Research," Forum for Health Economics & Policy, De Gruyter, vol. 16(2), pages 73-86, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Evans & A. Basu, 2011. "Exploring comparative effect heterogeneity with instrumental variables: prehospital intubation and mortality," Health, Econometrics and Data Group (HEDG) Working Papers 11/26, HEDG, c/o Department of Economics, University of York.
    2. Basu Anirban, 2013. "Personalized Medicine in the Context of Comparative Effectiveness Research," Forum for Health Economics & Policy, De Gruyter, vol. 16(2), pages 73-86, June.
    3. Basu, Anirban, 2015. "Welfare implications of learning through solicitation versus diversification in health care," Journal of Health Economics, Elsevier, vol. 42(C), pages 165-173.
    4. Anirban Basu & Anupam B. Jena & Dana P. Goldman & Tomas J. Philipson & Robert Dubois, 2014. "Heterogeneity In Action: The Role Of Passive Personalization In Comparative Effectiveness Research," Health Economics, John Wiley & Sons, Ltd., vol. 23(3), pages 359-373, March.
    5. William N. Evans & Craig Garthwaite, 2012. "Estimating Heterogeneity in the Benefits of Medical Treatment Intensity," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 635-649, August.
    6. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    7. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    8. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    9. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    10. Martin Nybom, 2017. "The Distribution of Lifetime Earnings Returns to College," Journal of Labor Economics, University of Chicago Press, vol. 35(4), pages 903-952.
    11. M. Christopher Auld, 2012. "Using Observational Data to Identify the Causal Effects of Health-related Behaviour," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 4, Edward Elgar Publishing.
    12. Anirban Basu & James J. Heckman & Salvador Navarro‐Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self‐selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157, November.
    13. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    14. Tobias Klein, 2013. "College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables," Empirical Economics, Springer, vol. 44(1), pages 135-161, February.
    15. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    16. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    17. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
    18. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    19. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    20. Daniel A Kamhöfer & Hendrik Schmitz & Matthias Westphal, 2019. "Heterogeneity in Marginal Non-Monetary Returns to Higher Education," Journal of the European Economic Association, European Economic Association, vol. 17(1), pages 205-244.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • D04 - Microeconomics - - General - - - Microeconomic Policy: Formulation; Implementation; Evaluation
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.