IDEAS home Printed from https://ideas.repec.org/p/mtu/wpaper/16_19.html
   My bibliography  Save this paper

Employment misclassification in survey and administrative reports

Author

Listed:
  • Dean Hyslop

    (Motu Economic and Public Policy Research)

  • Wilbur Townsend

    (Motu Economic and Public Policy Research)

Abstract

This paper analyses measurement error in the classification of employment. We show that the true employment rate and time-invariant error rates can be identified, given access to two measures of employment with independent errors. Empirical identification requires at least two periods of data over which the employment rate varies. We estimate our model using matched survey and administrative data from Statistics New Zealand’s Integrated Data Infrastructure. We find that both measures have error, with the administrative data being substantially more accurate than the survey data. In both sources, false positives are much more likely than false negatives. Allowing for errors in both sources substantially affects estimated employment rates.

Suggested Citation

  • Dean Hyslop & Wilbur Townsend, 2016. "Employment misclassification in survey and administrative reports," Working Papers 16_19, Motu Economic and Public Policy Research.
  • Handle: RePEc:mtu:wpaper:16_19
    as

    Download full text from publisher

    File URL: https://motu-www.motu.org.nz/wpapers/16_19.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dean R. Hyslop & Wilbur Townsend, 2020. "Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 457-469, April.
    2. Hyslop, Dean R. & Townsend, Wilbur, 2017. "Employment misclassification in survey and administrative reports," Economics Letters, Elsevier, vol. 155(C), pages 19-23.
    3. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    4. Poterba, James M & Summers, Lawrence H, 1995. "Unemployment Benefits and Labor Market Transitions: A Multinomial Logit Model with Errors in Classification," The Review of Economics and Statistics, MIT Press, vol. 77(2), pages 207-216, May.
    5. Shuaizhang Feng & Yingyao Hu, 2013. "Misclassification Errors and the Underestimation of the US Unemployment Rate," American Economic Review, American Economic Association, vol. 103(2), pages 1054-1070, April.
    6. John M. Abowd & Martha H. Stinson, 2013. "Estimating Measurement Error in Annual Job Earnings: A Comparison of Survey and Administrative Data," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1451-1467, December.
    7. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    8. Poterba, James M & Summers, Lawrence H, 1986. "Reporting Errors and Labor Market Dynamics," Econometrica, Econometric Society, vol. 54(6), pages 1319-1338, November.
    9. Michael P. Keane & Robert M. Sauer, 2009. "Classification Error in Dynamic Discrete Choice Models: Implications for Female Labor Supply Behavior," Econometrica, Econometric Society, vol. 77(3), pages 975-991, May.
    10. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    11. Pischke, Jorn-Steffen, 1995. "Measurement Error and Earnings Dynamics: Some Estimates from the PSID Validation Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 305-314, July.
    12. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    13. Abowd, John M & Zellner, Arnold, 1985. "Estimating Gross Labor-Force Flows," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 254-283, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyslop, Dean R. & Townsend, Wilbur, 2017. "Employment misclassification in survey and administrative reports," Economics Letters, Elsevier, vol. 155(C), pages 19-23.
    2. Ding Liu & Daniel L. Millimet, 2021. "Bounding the joint distribution of disability and employment with misclassification," Health Economics, John Wiley & Sons, Ltd., vol. 30(7), pages 1628-1647, July.
    3. Dean Hyslop & Wilbur Townsend, 2017. "The longer term impacts of job displacement on labour market outcomes," Working Papers 17_12, Motu Economic and Public Policy Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quinn Moore & Irma Perez-Johnson & Robert Santillano, 2018. "Decomposing Differences in Impacts on Survey- and Administrative-Measured Earnings From a Job Training Voucher Experiment," Evaluation Review, , vol. 42(5-6), pages 515-549, October.
    2. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Upjohn Working Papers 15-242, W.E. Upjohn Institute for Employment Research.
    3. Stefan Angel & Richard Heuberger & Nadja Lamei, 2018. "Differences Between Household Income from Surveys and Registers and How These Affect the Poverty Headcount: Evidence from the Austrian SILC," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(2), pages 575-603, July.
    4. Ding Liu & Daniel L. Millimet, 2021. "Bounding the joint distribution of disability and employment with misclassification," Health Economics, John Wiley & Sons, Ltd., vol. 30(7), pages 1628-1647, July.
    5. Dean R. Hyslop & Wilbur Townsend, 2020. "Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 457-469, April.
    6. Christian Imboden & John Voorheis & Caroline Weber, 2023. "Self-Employment Income Reporting on Surveys," Working Papers 23-19, Center for Economic Studies, U.S. Census Bureau.
    7. de Nicola, Francesca & Giné, Xavier, 2014. "How accurate are recall data? Evidence from coastal India," Journal of Development Economics, Elsevier, vol. 106(C), pages 52-65.
    8. Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
    9. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    10. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    12. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    13. Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023. "Accuracy of self‐reported private health insurance coverage," Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.
    14. Madeira, Carlos & Margaretic, Paula, 2022. "The impact of financial literacy on the quality of self-reported financial information," Journal of Behavioral and Experimental Finance, Elsevier, vol. 34(C).
    15. Shibata, Ippei, 2022. "Reassessing classification errors in the analysis of labor market dynamics," Labour Economics, Elsevier, vol. 78(C).
    16. Paulus, Alari, 2015. "Tax evasion and measurement error: An econometric analysis of survey data linked with tax records," ISER Working Paper Series 2015-10, Institute for Social and Economic Research.
    17. Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
    18. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    19. ChangHwan Kim & Christopher R. Tamborini, 2014. "Response Error in Earnings," Sociological Methods & Research, , vol. 43(1), pages 39-72, February.
    20. Bollinger, Christopher R. & Hirsch, Barry & Hokayem, Charles M. & Ziliak, James P., 2018. "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch," IZA Discussion Papers 11710, Institute of Labor Economics (IZA).

    More about this item

    Keywords

    Unemployment rate; measurement error; validation study;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • J6 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtu:wpaper:16_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Watene (email available below). General contact details of provider: https://edirc.repec.org/data/motuenz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.