IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2002-8.html
   My bibliography  Save this paper

Model Selection Criteria for Segmented Time Series from a Bayesian Approach to Information Compression

Author

Listed:
  • Brian Hanlon
  • Catherine Forbes

    ()

Abstract

The principle that the simplest model capable of describing observed phenomena should also correspond to the best description has long been a guiding rule of inference. In this paper a Bayesian approach to formally implementing this principle is employed to develop model selection criteria for detecting structural change in financial and economic time series. Model selection criteria which allow for multiple structural breaks and which seek the optimal model order and parameter choices within regimes are derived. Comparative simulations against other popular information based model selection criteria are performed. Application of the derived criteria are also made to example financial and economic time series.

Suggested Citation

  • Brian Hanlon & Catherine Forbes, 2002. "Model Selection Criteria for Segmented Time Series from a Bayesian Approach to Information Compression," Monash Econometrics and Business Statistics Working Papers 8/02, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2002-8
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2002/wp8-02.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen M. H & Yu B., 2001. "Model Selection and the Principle of Minimum Description Length," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 746-774, June.
    2. Oliver, J.J. & Forbes, C.S., 1997. "Bayesian Approaches to Segmenting A Simple Time Series," Monash Econometrics and Business Statistics Working Papers 14/97, Monash University, Department of Econometrics and Business Statistics.
    3. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    4. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    5. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    6. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Complexity theory; segmentation; break points; change points; model selection; model choice.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2002-8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.