IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2000-2.html
   My bibliography  Save this paper

An EM Algorithm for Modelling Variably-Aggregated Demand

Author

Listed:
  • Grose, S.
  • McLaren, K.

Abstract

This paper develops an EM algorithm for the estimation of a consumer demand system involving variably aggregated data. The methodology is based on the observation that more highly aggregated data does in fact contain information on the finer subcategories. It is therefore possible, under certain simplifying assumptions, to derive the distribution of the unobserved fine-level expenditures conditional on the observed but more highly aggregated data. The expectation of the log-likelihood is then taken with respect to this conditional distribution. Under the assumption of multivariate normality both these steps can be performed analytically, resulting in an EM criterion that can be maximised iteratively at comparatively little cost. The technique is applied to an ABS dataset containing historical information relating to private final consumption expenditures on up to 18 commodities.

Suggested Citation

  • Grose, S. & McLaren, K., 2000. "An EM Algorithm for Modelling Variably-Aggregated Demand," Monash Econometrics and Business Statistics Working Papers 2/00, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2000-2
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2000/wp2-00.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. de Boer, P. M. C. & Harkema, R., 1986. "Maximum likelihood estimation of sum-constrained linear models with insufficient observations," Economics Letters, Elsevier, vol. 20(4), pages 325-329.
    2. Fry, Jane M. & Fry, Tim R. L. & McLaren, Keith R., 1996. "The stochastic specification of demand share equations: Restricting budget shares to the unit simplex," Journal of Econometrics, Elsevier, vol. 73(2), pages 377-385, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    EM Algorithm; Singular demand systems; Linear expenditure system; Missing data.;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2000-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.