IDEAS home Printed from
   My bibliography  Save this paper

Business surveys modelling with seasonal-cyclical long memory models



Business surveys are an important element in the analysis of the short-term economic situation because of the timeliness and nature of the information they convey. Especially, surveys are often involved in econometric models in order to provide an early assessment of the current state of the economy, which is of great interest for policy-makers. In this paper, we focus on non-seasonally adjusted business surveys released by the European Commission. We introduce an innovative way for modelling those series taking the persistence of the seasonal roots into account through seasonal-cyclical long memory models. We empirically prove that such models produce more accurate forecasts than classical seasonal linear models.

Suggested Citation

  • Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with seasonal-cyclical long memory models," Documents de travail du Centre d'Economie de la Sorbonne b08035, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:b08035

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185370, HAL.
    2. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    3. Arteche, Josu & Robinson, Peter M., 1998. "Semiparametric inference in seasonal and cyclical long memory processes," LSE Research Online Documents on Economics 2203, London School of Economics and Political Science, LSE Library.
    4. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes : a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    6. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    7. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    8. Laurent Ferrara, 2007. "Point and interval nowcasts of the Euro area IPI," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 115-120.
    9. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    10. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long-Range-Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    11. repec:hal:journl:halshs-00259193 is not listed on IDEAS
    12. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    13. Sofia C. Olhede, 2004. "Large-sample properties of the periodogram estimator of seasonally persistent processes," Biometrika, Biometrika Trust, vol. 91(3), pages 613-628, September.
    14. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    2. Artiach, Miguel, 2012. "Leverage, skewness and amplitude asymmetric cycles," MPRA Paper 41267, University Library of Munich, Germany.

    More about this item


    Euro area; nowcasting; business surveys; seasonal; long memory.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:b08035. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label) or (Joanne Lustig). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.