IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-08c20041.html
   My bibliography  Save this article

Business surveys modelling with Seasonal-Cyclical Long Memory models

Author

Listed:
  • Laurent Ferrara

    () (Banque de France and CES, University Paris 1 - Panthéon - Sorbonne)

  • Dominique Guégan

    () (CES, University Paris 1 - Panthéon - Sorbonne)

Abstract

Business surveys are an important element in the analysis of the short-term economic situation because of the timeliness and nature of the information they convey. Especially, surveys are often involved in econometric models in order to provide an early assessment of the current state of the economy, which is of great interest for policy-makers. In this paper, we focus on non-seasonally adjusted business surveys released by the European Commission. We introduce an innovative way for modelling those series taking the persistence of the seasonal roots into account through seasonal-cyclical long memory models. We empirically prove that such models produce more accurate forecasts than classical seasonal linear models.

Suggested Citation

  • Laurent Ferrara & Dominique Guégan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-10.
  • Handle: RePEc:ebl:ecbull:eb-08c20041
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/EB/2008/Volume3/EB-08C20041A.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    2. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185370, HAL.
    3. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes : a Monte Carlo study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00259193, HAL.
    4. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long-Range-Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    5. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    6. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    7. repec:hal:journl:halshs-00259193 is not listed on IDEAS
    8. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    9. Arteche, Josu & Robinson, Peter M., 1998. "Semiparametric inference in seasonal and cyclical long memory processes," LSE Research Online Documents on Economics 2203, London School of Economics and Political Science, LSE Library.
    10. Sofia C. Olhede, 2004. "Large-sample properties of the periodogram estimator of seasonally persistent processes," Biometrika, Biometrika Trust, vol. 91(3), pages 613-628, September.
    11. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    12. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    13. Laurent Ferrara, 2007. "Point and interval nowcasts of the Euro area IPI," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 115-120.
    14. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, pages 2139-2158.
    2. Artiach, Miguel, 2012. "Leverage, skewness and amplitude asymmetric cycles," MPRA Paper 41267, University Library of Munich, Germany.

    More about this item

    Keywords

    business surveys;

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-08c20041. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John P. Conley). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.