IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

How big should my store be? On the interplay between shelf-space, demand learning and assortment decisions

Listed author(s):
  • Kevin Glazebrook

    (Department of Management Science, Lancaster University Management School)

  • Joern Meissner

    (Department of Logistics, Kuehne Logistics University)

  • Jochen Schurr

    (Department of Management Science, Lancaster University Management School)

A fundamental decision every merchant has to make is on is how large his stores should be. This is particularly true in light of the drastic changes retail concepts have seen in the last decade. There has been a noticeable tendency, particularly for food and convenience retailers, to open more and smaller stores. Also, there has been a well-documented recent shift in paradigm in apparel retailing with the so called fast-fashion business model. Short lead times have resulted in flexibility that allows retailers to adjust the assortment of products offered on sale at their stores quickly enough to adapt to popular fashion trends. Based on revised estimates of the merchandise's popularity, they then weed out unpopular items and re-stock demonstrably popular ones on a week-by-week basis. However, despite the obvious similarity of reliance on better demand learning, fashion-fashion retailers like Zara have opted to do exactly the opposite as groceries and opened sizable stores in premium locations. This paradox has not been explained in the literature so far. In this paper, we aim to calculate the profit of a retailer in such a complicated environment with demand learning and frequent assortment decisions in particular in dependence of the most valuable resource of a retailer: shelf-space. To be able to achieve this, we extend the recent approaches in the management literature to handle the sequential resource allocation problems that arises in this context with a concurrent need for learning. We investigate the use of multi-armed bandits to model the assortment decisions under demand learning, whereby this aspect is captured by a Bayesian Gamma-Poisson model. Our model enables us to characterize the marginal value of shelf-space and to calculate the optimal store size under learning and assortment decisions. An extensive numerical study confirms that the store size choices observed in real life can be explained by the varying length of selling seasons different retailers face.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Full Paper
Download Restriction: no

Paper provided by Department of Management Science, Lancaster University in its series Working Papers with number MRG/0021.

in new window

Length: 32 pages
Date of creation: Dec 2012
Date of revision: Dec 2012
Handle: RePEc:lms:mansci:mrg-0021
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Yang, Ming-Hsien & Chen, Wen-Cher, 1999. "A study on shelf space allocation and management," International Journal of Production Economics, Elsevier, vol. 60(1), pages 309-317, April.
  2. Hariga, Moncer A. & Al-Ahmari, Abdulrahman & Mohamed, Abdel-Rahman A., 2007. "A joint optimisation model for inventory replenishment, product assortment, shelf space and display area allocation decisions," European Journal of Operational Research, Elsevier, vol. 181(1), pages 239-251, August.
  3. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
  4. Brezzi, Monica & Lai, Tze Leung, 2002. "Optimal learning and experimentation in bandit problems," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 87-108, November.
  5. Yücel, Eda & Karaesmen, Fikri & Salman, F. Sibel & Türkay, Metin, 2009. "Optimizing product assortment under customer-driven demand substitution," European Journal of Operational Research, Elsevier, vol. 199(3), pages 759-768, December.
  6. Marcel Corstjens & Peter Doyle, 1981. "A Model for Optimizing Retail Space Allocations," Management Science, INFORMS, vol. 27(7), pages 822-833, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lms:mansci:mrg-0021. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joern Meissner)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.