IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i3p759-768.html
   My bibliography  Save this article

Optimizing product assortment under customer-driven demand substitution

Author

Listed:
  • Yücel, Eda
  • Karaesmen, Fikri
  • Salman, F. Sibel
  • Türkay, Metin

Abstract

The problem of product assortment and inventory planning under customer-driven demand substitution is analyzed and a mathematical model for this problem is provided in this paper. Realistic issues in a retail context such as supplier selection, shelf space constraints, and poor quality procurement are also taken into account. The performance of three modified models, one that neglects customers' substitution behavior, another that excludes supplier selection decision, and one that ignores shelf space limitations, are analyzed separately with computational experiments. The results of the analysis demonstrate that neglecting customer-driven substitution or excluding supplier selection or ignoring shelf space limitations may lead to significantly inefficient assortments. The effects of demand variability and substitution cost on optimal assortment and supplier selection decisions as well as on the optimal revenue are also investigated. The main contribution of this paper is the development of a practical and flexible model to aid retailers in finding optimal assortments to maximize the expected profit.

Suggested Citation

  • Yücel, Eda & Karaesmen, Fikri & Salman, F. Sibel & Türkay, Metin, 2009. "Optimizing product assortment under customer-driven demand substitution," European Journal of Operational Research, Elsevier, vol. 199(3), pages 759-768, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:759-768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00698-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    2. Garrett van Ryzin & Siddharth Mahajan, 1999. "On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments," Management Science, INFORMS, vol. 45(11), pages 1496-1509, November.
    3. David W. Pentico, 1974. "The Assortment Problem with Probabilistic Demands," Management Science, INFORMS, vol. 21(3), pages 286-290, November.
    4. Degraeve, Zeger & Labro, Eva & Roodhooft, Filip, 2000. "An evaluation of vendor selection models from a total cost of ownership perspective," European Journal of Operational Research, Elsevier, vol. 125(1), pages 34-58, August.
    5. Rajaram, Kumar & Tang, Christopher S., 2001. "The impact of product substitution on retail merchandising," European Journal of Operational Research, Elsevier, vol. 135(3), pages 582-601, December.
    6. Vishal Gaur & Dorothée Honhon, 2006. "Assortment Planning and Inventory Decisions Under a Locational Choice Model," Management Science, INFORMS, vol. 52(10), pages 1528-1543, October.
    7. Gérard P. Cachon & Christian Terwiesch & Yi Xu, 2005. "Retail Assortment Planning in the Presence of Consumer Search," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 330-346, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hübner, Alexander & Schaal, Kai, 2017. "A shelf-space optimization model when demand is stochastic and space-elastic," Omega, Elsevier, vol. 68(C), pages 139-154.
    2. Ozer, Muammer, 2011. "Understanding the impacts of product knowledge and product type on the accuracy of intentions-based new product predictions," European Journal of Operational Research, Elsevier, vol. 211(2), pages 359-369, June.
    3. Kevin Glazebrook & Joern Meissner & Jochen Schurr, 2012. "How big should my store be? On the interplay between shelf-space, demand learning and assortment decisions," Working Papers MRG/0021, Department of Management Science, Lancaster University, revised Dec 2012.
    4. Tan, Baris & Karabati, Selcuk, 2013. "Retail inventory management with stock-out based dynamic demand substitution," International Journal of Production Economics, Elsevier, vol. 145(1), pages 78-87.
    5. Shin, Hojung & Park, Soohoon & Lee, Euncheol & Benton, W.C., 2015. "A classification of the literature on the planning of substitutable products," European Journal of Operational Research, Elsevier, vol. 246(3), pages 686-699.
    6. Kim, Sang-Won & Bell, Peter C., 2011. "Optimal pricing and production decisions in the presence of symmetrical and asymmetrical substitution," Omega, Elsevier, vol. 39(5), pages 528-538, October.
    7. Ghoniem, Ahmed & Maddah, Bacel, 2015. "Integrated retail decisions with multiple selling periods and customer segments: Optimization and insights," Omega, Elsevier, vol. 55(C), pages 38-52.
    8. Hübner, Alexander & Kuhn, Heinrich & Kühn, Sandro, 2016. "An efficient algorithm for capacitated assortment planning with stochastic demand and substitution," European Journal of Operational Research, Elsevier, vol. 250(2), pages 505-520.
    9. Hübner, Alexander H. & Kuhn, Heinrich, 2012. "Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management," Omega, Elsevier, vol. 40(2), pages 199-209, April.
    10. Hübner, Alexander & Schaal, Kai, 2017. "An integrated assortment and shelf-space optimization model with demand substitution and space-elasticity effects," European Journal of Operational Research, Elsevier, vol. 261(1), pages 302-316.
    11. Rodríguez, Betzabé & AydIn, Göker, 2011. "Assortment selection and pricing for configurable products under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 210(3), pages 635-646, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:759-768. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.