IDEAS home Printed from https://ideas.repec.org/p/jku/econwp/2020-21.html
   My bibliography  Save this paper

Hedging with commodity futures and the end of normal Backwardation

Author

Listed:

Abstract

Using the S&P GSCI and its five component sub-indices, we show that considering each commodity separately yields nontrivial hedging gains in and out of sample. During 1999–2019, the maximum Sharpe ratio portfolio assigns positive weights to the GSCI Energy, Industrial and Precious Metals, whereas only precious metals enter the optimal portfolio after the financial crisis. In out-of-sample optimizations based on dynamic conditional correlations, a subset of commodity futures excluding the GSCI Agriculture and Livestock outperforms conventional stock-bond portfolios with and without the overall GSCI. We argue that the “normal backwardation” in commodity markets has broken down during our sample period.

Suggested Citation

  • Jochen Güntner & Benjamin Karner, 2020. "Hedging with commodity futures and the end of normal Backwardation," Economics working papers 2020-21, Department of Economics, Johannes Kepler University Linz, Austria.
  • Handle: RePEc:jku:econwp:2020-21
    Note: English
    as

    Download full text from publisher

    File URL: http://www.econ.jku.at/papers/2020/wp2021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirshleifer, David, 1990. "Hedging Pressure and Futures Price Movements in a General Equilibrium Model," Econometrica, Econometric Society, vol. 58(2), pages 411-428, March.
    2. Hirshleifer, David, 1989. "Determinants of Hedging and Risk Premia in Commodity Futures Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 313-331, September.
    3. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    4. Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    8. Panos K. Pouliasis & Nikos C. Papapostolou, 2018. "Volatility and correlation timing: The role of commodities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1407-1439, November.
    9. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    10. Reinhard Ellwanger & Benjamin Sawatzky & Konrad Zmitrowicz, 2017. "Factors Behind the 2014 Oil Price Decline," Bank of Canada Review, Bank of Canada, vol. 2017(Autumn), pages 1-13.
    11. Sadorsky, Perry, 2014. "Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat," Energy Economics, Elsevier, vol. 43(C), pages 72-81.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    14. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    15. Gerald R. Jensen & Robert R. Johnson & Jeffrey M. Mercer, 2000. "Efficient use of commodity futures in diversified portfolios," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 20(5), pages 489-506, May.
    16. Basu, Devraj & Miffre, Joëlle, 2013. "Capturing the risk premium of commodity futures: The role of hedging pressure," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2652-2664.
    17. Ritika Jaiswal & Rashmi Uchil, 2018. "An analysis of diversification benefits of commodity futures using Markov regime-switching approach," Afro-Asian Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 8(1), pages 20-47.
    18. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    19. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    20. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    21. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    22. Franklin R. Edwards & James M. Park, 1996. "Do managed futures make good investments?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(5), pages 475-517, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Antonio Galán-Gutiérrez & Rodrigo Martín-García, 2022. "Fundamentals vs. Financialization during Extreme Events: From Backwardation to Contango, a Copper Market Analysis during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
    2. Galán-Gutiérrez, Juan Antonio & Labeaga, José M. & Martín-García, Rodrigo, 2023. "Cointegration between high base metals prices and backwardation: Getting ready for the metals super-cycle," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
    4. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    5. P. S. Niveditha, 2025. "Identifying Safe Haven Assets: Evidence from Fractal Market Hypothesis," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 313-335, January.
    6. Maghyereh, Aktham I. & Awartani, Basel & Tziogkidis, Panagiotis, 2017. "Volatility spillovers and cross-hedging between gold, oil and equities: Evidence from the Gulf Cooperation Council countries," Energy Economics, Elsevier, vol. 68(C), pages 440-453.
    7. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    8. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, Enero-Abr.
    10. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Morema, Kgotso & Bonga-Bonga, Lumengo, 2018. "The impact of oil and gold price fluctuations on the South African equity market: volatility spillovers and implications for portfolio management," MPRA Paper 87637, University Library of Munich, Germany.
    12. C. Alexander & M. Coulon & Y. Han & X. Meng, 2024. "Evaluating the discrimination ability of proper multi-variate scoring rules," Annals of Operations Research, Springer, vol. 334(1), pages 857-883, March.
    13. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    14. Felipe de Oliveira & Sinézio Fernandes Maia & Diego Pita de Jesus, 2017. "Which information matters to Market risk spreading in Brazil? Volatility transmission modeling using MGARH-BEKK, DCC, t-COPULAS," EcoMod2017 10378, EcoMod.
    15. Cristina Amado & Annastiina Silvennoinen & Timo Ter¨asvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," NIPE Working Papers 07/2018, NIPE - Universidade do Minho.
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    17. Van Cauwenberge, Annelies & Vancauteren, Mark & Braekers, Roel & Vandemaele, Sigrid, 2019. "International trade, foreign direct investments, and firms’ systemic risk : Evidence from the Netherlands," Economic Modelling, Elsevier, vol. 81(C), pages 361-386.
    18. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    19. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    20. Kritika Mathur & Nidhi Kaicker & Raghav Gaiha & Katsushi S. Imai & Ganesh Thapa, 2014. "Financialisation of food commodity markets, price surge and volatility: new evidence," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 7, pages 149-176, Edward Elgar Publishing.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jku:econwp:2020-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: René Böheim (email available below). General contact details of provider: https://edirc.repec.org/data/vlinzat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.