IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp8411.html
   My bibliography  Save this paper

Which Schools and Pupils Respond to Educational Achievement Surveys? A Focus on the English PISA Sample

Author

Listed:
  • Schnepf, Sylke V.

    (European Commission, DG Joint Research Centre)

  • Durrant, Gabriele B.

    (University of Southampton)

  • Micklewright, John

    (University College London)

Abstract

Using logistic and multilevel logistic modelling we examine non-response at the school and pupil level to the important educational achievement survey Programme for International Student Assessment (PISA) for England. The analysis exploits unusually rich auxiliary information on all schools and pupils sampled for PISA whether responding or not, including data from two large-scale administrative sources on pupils' results in national public exams, which correlate highly with the PISA target variable. Results show that characteristics associated with non-response differ between the school and pupil levels. The findings have important implications for the survey design of education data.

Suggested Citation

  • Schnepf, Sylke V. & Durrant, Gabriele B. & Micklewright, John, 2014. "Which Schools and Pupils Respond to Educational Achievement Surveys? A Focus on the English PISA Sample," IZA Discussion Papers 8411, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp8411
    as

    Download full text from publisher

    File URL: http://ftp.iza.org/dp8411.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jon Rasbash & George Leckie & Rebecca Pillinger & Jennifer Jenkins, 2010. "Children's educational progress: partitioning family, school and area effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 657-682, July.
    2. Lorraine Dearden & Alfonso Miranda & Sophia Rabe‐Hesketh, 2011. "Measuring School Value Added with Administrative Data: The Problem of Missing Variables," Fiscal Studies, Institute for Fiscal Studies, vol. 32(2), pages 263-278, June.
    3. F. Kreuter & K. Olson & J. Wagner & T. Yan & T. M. Ezzati‐Rice & C. Casas‐Cordero & M. Lemay & A. Peytchev & R. M. Groves & T. E. Raghunathan, 2010. "Using proxy measures and other correlates of survey outcomes to adjust for non‐response: examples from multiple surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 389-407, April.
    4. repec:mpr:mprres:4937 is not listed on IDEAS
    5. Denise Hawkes & Ian Plewis, 2006. "Modelling non‐response in the National Child Development Study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 479-491, July.
    6. W. J. Browne & S. V. Subramanian & K. Jones & H. Goldstein, 2005. "Variance partitioning in multilevel logistic models that exhibit overdispersion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(3), pages 599-613, July.
    7. George Leckie & Harvey Goldstein, 2011. "Understanding Uncertainty in School League Tables," Fiscal Studies, Institute for Fiscal Studies, vol. 32(2), pages 207-224, June.
    8. repec:mpr:mprres:4780 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sprietsma, Maresa, 2016. "Which incentives to increase survey response of secondary school pupils?," ZEW Discussion Papers 16-071, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele B. Durrant & Sylke V. Schnepf, 2018. "Which schools and pupils respond to educational achievement surveys?: a focus on the English Programme for International Student Assessment sample," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1057-1075, October.
    2. Juan Merlo & Philippe Wagner & Nermin Ghith & George Leckie, 2016. "An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy: The Case of Neighbourhoods and Health," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    3. Lucy Prior & John Jerrim & Dave Thomson & George Leckie, 2021. "A review and evaluation of secondary school accountability in England: Statistical strengths, weaknesses, and challenges for 'Progress 8' raised by COVID-19," CEPEO Working Paper Series 21-04, Centre for Education Policy and Equalising Opportunities, UCL Institute of Education, revised Apr 2021.
    4. Steele, Fiona & Durrant, Gabriele B., 2011. "Alternative approaches to multilevel modelling of survey non-contact and refusal," LSE Research Online Documents on Economics 50113, London School of Economics and Political Science, LSE Library.
    5. Lucy Prior & John Jerrim & Dave Thomson & George Leckie, 2021. "A review and evaluation of secondary school accountability in England: Statistical strengths, weaknesses, and challenges for ‘Progress 8’ raised by COVID-19," DoQSS Working Papers 21-12, Quantitative Social Science - UCL Social Research Institute, University College London.
    6. Elias Giannakis & Sophia Efstratoglou & Artemis Antoniades, 2018. "Off-Farm Employment and Economic Crisis: Evidence from Cyprus," Agriculture, MDPI, Open Access Journal, vol. 8(3), pages 1-11, March.
    7. Natasha Wood & David Bann & Rebecca Hardy & Catharine Gale & Alissa Goodman & Claire Crawford & Mai Stafford, 2017. "Childhood socioeconomic position and adult mental wellbeing: Evidence from four British birth cohort studies," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-13, October.
    8. Cheti Nicoletti & Birgitta Rabe, 2013. "Inequality in Pupils' Test Scores: How Much do Family, Sibling Type and Neighbourhood Matter?," Economica, London School of Economics and Political Science, vol. 80(318), pages 197-218, April.
    9. Chen, Alice J., 2012. "When does weight matter most?," Journal of Health Economics, Elsevier, vol. 31(1), pages 285-295.
    10. Thomas, Duncan & Witoelar, Firman & Frankenberg, Elizabeth & Sikoki, Bondan & Strauss, John & Sumantri, Cecep & Suriastini, Wayan, 2012. "Cutting the costs of attrition: Results from the Indonesia Family Life Survey," Journal of Development Economics, Elsevier, vol. 98(1), pages 108-123.
    11. Sulis, Isabella & Giambona, Francesca & Porcu, Mariano, 2020. "Adjusted indicators of quality and equity for monitoring the education systems over time. Insights on EU15 countries from PISA surveys," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    12. Durrant Gabriele B. & Maslovskaya Olga & Smith Peter W. F., 2017. "Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?," Journal of Official Statistics, Sciendo, vol. 33(3), pages 801-833, September.
    13. Black, Nicole & Johnston, David W. & Propper, Carol & Shields, Michael A., 2019. "The effect of school sports facilities on physical activity, health and socioeconomic status in adulthood," Social Science & Medicine, Elsevier, vol. 220(C), pages 120-128.
    14. Fikru, Mahelet G., 2020. "Determinants of electricity bill savings for residential solar panel adopters in the U.S.: A multilevel modeling approach," Energy Policy, Elsevier, vol. 139(C).
    15. Joachim R. Frick & Markus M. Grabka, 2007. "Item Non-response and Imputation of Annual Labor Income in Panel Surveys from a Cross-National Perspective," Discussion Papers of DIW Berlin 736, DIW Berlin, German Institute for Economic Research.
    16. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.
    17. M. Lippi Bruni & L. Nobilio & C. Ugolini, 2007. "Economic Incentives in General Practice: the Impact of Pay for Participation Programs on Diabetes Care," Working Papers 607, Dipartimento Scienze Economiche, Universita' di Bologna.
    18. Gianluca Fiorentini & Elisa Iezzi & Matteo Lippi Bruni & Cristina Ugolini, 2011. "Incentives in primary care and their impact on potentially avoidable hospital admissions," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 12(4), pages 297-309, August.
    19. Millemaci, Emanuele & Sciulli, Dario, 2011. "The causal effect of family difficulties during childhood on adult labour market outcomes," MPRA Paper 29026, University Library of Munich, Germany.
    20. Nicole Watson & Mark Wooden, 2011. "Re-engaging with Survey Non-respondents: The BHPS, SOEP and HILDA Survey Experience," Melbourne Institute Working Paper Series wp2011n02, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

    More about this item

    Keywords

    Programme for International Student Assessment (PISA); survey design; data linkage; non-response; educational achievement survey;
    All these keywords.

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp8411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.