IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v172y2009i2p361-381.html
   My bibliography  Save this article

Multilevel modelling of refusal and non‐contact in household surveys: evidence from six UK Government surveys

Author

Listed:
  • Gabriele B. Durrant
  • Fiona Steele

Abstract

Summary. We analyse household unit non‐response in six major UK Government surveys by using a multilevel multinomial modelling approach. The models are guided by current conceptual frameworks and theories of survey participation. One key feature of the analysis is the investigation of the extent to which effects of household characteristics are survey specific. The analysis is based on the 2001 UK Census Link Study, which is a unique source of data containing an unusually rich set of auxiliary variables. The study contains the response outcome of six surveys, linked to census data and interviewer observations for both respondents and non‐respondents.

Suggested Citation

  • Gabriele B. Durrant & Fiona Steele, 2009. "Multilevel modelling of refusal and non‐contact in household surveys: evidence from six UK Government surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 361-381, April.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:2:p:361-381
    DOI: 10.1111/j.1467-985X.2008.00565.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2008.00565.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2008.00565.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Pickery & Geert Loosveldt & Ann Carton, 2001. "The Effects of Interviewer and Respondent Characteristics on Response Behavior in Panel Surveys," Sociological Methods & Research, , vol. 29(4), pages 509-523, May.
    2. Jan Pickery & Geert Loosveldt, 2002. "A Multilevel Multinomial Analysis of Interviewer Effects on Various Components of Unit Nonresponse," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(4), pages 427-437, November.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geert Loosveldt & Koen Beullens, 2014. "A Procedure to Assess Interviewer Effects on Nonresponse Bias," SAGE Open, , vol. 4(1), pages 21582440145, February.
    2. Schnepf, Sylke V. & Durrant, Gabriele B. & Micklewright, John, 2014. "Which Schools and Pupils Respond to Educational Achievement Surveys? A Focus on the English PISA Sample," IZA Discussion Papers 8411, Institute of Labor Economics (IZA).
    3. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    4. Durrant, Gabriele B. & D'Arrigo, Julia & Steele, Fiona, 2011. "Using field process data to predict best times of contact conditioning on household and interviewer influences," LSE Research Online Documents on Economics 52201, London School of Economics and Political Science, LSE Library.
    5. Kristen Olson, 2013. "Paradata for Nonresponse Adjustment," The ANNALS of the American Academy of Political and Social Science, , vol. 645(1), pages 142-170, January.
    6. Francisco Perales & Bernard Baffour & Francis Mitrou, 2015. "Ethnic Differences in the Quality of the Interview Process and Implications for Survey Analysis: The Case of Indigenous Australians," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    7. Finaba Berete & Johan Van der Heyden & Stefaan Demarest & Rana Charafeddine & Lydia Gisle & Elise Braekman & Jean Tafforeau & Geert Molenberghs, 2019. "Determinants of unit nonresponse in multi-mode data collection: A multilevel analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    8. Gabriele B. Durrant & Sylke V. Schnepf, 2018. "Which schools and pupils respond to educational achievement surveys?: a focus on the English Programme for International Student Assessment sample," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1057-1075, October.
    9. Rebecca Vassallo & Gabriele Durrant & Peter Smith, 2017. "Separating interviewer and area effects by using a cross-classified multilevel logistic model: simulation findings and implications for survey designs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 531-550, February.
    10. Khudnitskaya, Alesia S., 2009. "Microenvironment-specific Effects in the Application Credit Scoring Model," MPRA Paper 23175, University Library of Munich, Germany.
    11. Barbara Felderer & Jannis Kueck & Martin Spindler, 2021. "Big Data meets Causal Survey Research: Understanding Nonresponse in the Recruitment of a Mixed-mode Online Panel," Papers 2102.08994, arXiv.org.
    12. Adriana Ana Maria Davidescu & Monica Roman & Vasile Alecsandru Strat & Mihaela Mosora, 2019. "Regional Sustainability, Individual Expectations and Work Motivation: A Multilevel Analysis," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    13. Maddalena Cavicchioli & Michele Lalla, 2022. "Evidences from survey data and fiscal data: nonresponse and measurement errors in annual incomes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 587-615, September.
    14. Kibuchi, Eliud & Durrant, Gabriele B. & Maslovskaya, Olga & Sturgis, Patrick, 2024. "An assessment of the utility of a Bayesian framework to improve response propensity modes in longitudinal data," LSE Research Online Documents on Economics 126599, London School of Economics and Political Science, LSE Library.
    15. Durrant Gabriele B. & Maslovskaya Olga & Smith Peter W. F., 2017. "Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?," Journal of Official Statistics, Sciendo, vol. 33(3), pages 801-833, September.
    16. Steele, Fiona & Durrant, Gabriele B., 2011. "Alternative approaches to multilevel modelling of survey non-contact and refusal," LSE Research Online Documents on Economics 50113, London School of Economics and Political Science, LSE Library.
    17. Walejko Gina & Wagner James, 2018. "A Study of Interviewer Compliance in 2013 and 2014 Census Test Adaptive Designs," Journal of Official Statistics, Sciendo, vol. 34(3), pages 649-670, September.
    18. Coffey Stephanie & Elliott Michael R., 2023. "Predicting Days to Respondent Contact in Cross-Sectional Surveys Using a Bayesian Approach," Journal of Official Statistics, Sciendo, vol. 39(3), pages 325-349, September.
    19. Alireza Rezaee & Mojtaba Ganjali & Ehsan Bahrami Samani, 2022. "Sample selection bias with multiple dependent selection rules: an application to survey data analysis with multilevel nonresponse," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-15, December.
    20. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.
    21. Wagner James & Olson Kristen, 2018. "An Analysis of Interviewer Travel and Field Outcomes in Two Field Surveys," Journal of Official Statistics, Sciendo, vol. 34(1), pages 211-237, March.
    22. Roger Tourangeau & J. Michael Brick & Sharon Lohr & Jane Li, 2017. "Adaptive and responsive survey designs: a review and assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 203-223, January.
    23. Mark Amos, 2018. "Interviewer effects on patterns of nonresponse: Evaluating the impact on the reasons for contraceptive nonuse in the Indonesia and the Philippines DHS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 39(14), pages 415-430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Brunton-Smith & Patrick Sturgis & George Leckie, 2017. "Detecting and understanding interviewer effects on survey data by using a cross-classified mixed effects location–scale model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 551-568, February.
    2. Rebecca Vassallo & Gabriele Durrant & Peter Smith, 2017. "Separating interviewer and area effects by using a cross-classified multilevel logistic model: simulation findings and implications for survey designs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 531-550, February.
    3. Durrant, Gabriele B. & Steele, Fiona, 2009. "Multilevel modelling of refusal and non-contact in household surveys: evidence from six UK Government surveys," LSE Research Online Documents on Economics 50112, London School of Economics and Political Science, LSE Library.
    4. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    6. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    7. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    8. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    9. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    10. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    11. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    12. Fourrier-Nicolaï Edwin & Lubrano Michel, 2024. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
    13. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    14. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    15. repec:jss:jstsof:21:i08 is not listed on IDEAS
    16. Deng, Yaguo & Lopes Moreira da Veiga, María Helena & Wiper, Michael Peter, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    18. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    19. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    20. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    21. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:2:p:361-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.