IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2022-107.html
   My bibliography  Save this paper

The Great Carbon Arbitrage

Author

Listed:
  • Mr. Tobias Adrian
  • Mr. Patrick Bolton
  • Alissa M. Kleinnijenhuis

Abstract

We measure the gains from phasing out coal as the average social cost of carbon times the quantity of avoided emissions. By comparing the present value of benefits from avoided emissions against the present value of costs of ending coal and replacing it with renewables, our conservative baseline estimate is that the world can realize a net gain of $85 trillion. This global net social benefit can be attained through an international agreement to phase out coal. We also explore how this net benefit is distributed across countries and find that most countries would benefit from a global coal phase-out even without any compensatory cross-country transfers. Finally, we estimate the size of public funds that must be committed under a blended finance arrangement to finance the cost of replacing coal with renewables.

Suggested Citation

  • Mr. Tobias Adrian & Mr. Patrick Bolton & Alissa M. Kleinnijenhuis, 2022. "The Great Carbon Arbitrage," IMF Working Papers 2022/107, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2022/107
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=518464
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yangsiyu Lu & Francois Cohen & Stephen M. Smith & Alexander Pfeiffer, 2022. "Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Ian W.H. Parry & Mr. Simon Black & Nate Vernon, 2021. "Still Not Getting Energy Prices Right: A Global and Country Update of Fossil Fuel Subsidies," IMF Working Papers 2021/236, International Monetary Fund.
    3. Sebastian Rauner & Nico Bauer & Alois Dirnaichner & Rita Van Dingenen & Chris Mutel & Gunnar Luderer, 2020. "Coal-exit health and environmental damage reductions outweigh economic impacts," Nature Climate Change, Nature, vol. 10(4), pages 308-312, April.
    4. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    5. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    6. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    7. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    8. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    9. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    10. Jing Meng & Rupert Way & Elena Verdolini & Laura Diaz Anadon, 2021. "Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(27), pages 1917165118-, July.
    11. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Bolton & Lee Buchheit & Mitu Gulati & Ugo Panizza & Beatrice Weder & Jeromin Zettelmeyer, 2023. "On Debt and climate," Oxford Open Economics, Oxford University Press, vol. 2, pages 307-316.
    2. Siele Jean Tuo & Chang Li & Ettien Fulgence Brou & Diby Francois Kassi & Yobouet Thierry Gnangoin, 2024. "Estimating the carbon dioxide emission levels of G7 countries: A count data approach," Energy & Environment, , vol. 35(4), pages 1753-1772, June.
    3. O'Connell, Marguerite & Abraham, Laurent & Oleaga, Iñigo Arruga, 2023. "The legal and institutional feasibility of an EU Climate and Energy Security Fund," Occasional Paper Series 313, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Nemet, Gregory F. & Lu, Jiaqi & Rai, Varun & Rao, Rohan, 2020. "Knowledge spillovers between PV installers can reduce the cost of installing solar PV," Energy Policy, Elsevier, vol. 144(C).
    3. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    4. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Farrell, Niall, 2023. "Policy design for green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
    8. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    9. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.
    10. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    11. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    12. Stetter, Chris & Piel, Jan-Hendrik & Hamann, Julian F.H. & Breitner, Michael H., 2020. "Competitive and risk-adequate auction bids for onshore wind projects in Germany," Energy Economics, Elsevier, vol. 90(C).
    13. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    14. Yang Qiu & Patrick Lamers & Vassilis Daioglou & Noah McQueen & Harmen-Sytze Boer & Mathijs Harmsen & Jennifer Wilcox & André Bardow & Sangwon Suh, 2022. "Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    16. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    17. Ho, Ron Yiu-wah & Strange, Roger & Piesse, Jenifer, 2006. "On the conditional pricing effects of beta, size, and book-to-market equity in the Hong Kong market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(3), pages 199-214, July.
    18. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    19. Michel Fliess & Cédric Join, 2009. "Systematic risk analysis: first steps towards a new definition of beta," Post-Print inria-00425077, HAL.
    20. Barbara Fidanza & Ottorino Morresi, 2021. "Size and Value Anomalies in European Bank Stocks," International Journal of Business and Management, Canadian Center of Science and Education, vol. 13(12), pages 227-227, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2022/107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.