IDEAS home Printed from https://ideas.repec.org/p/ihs/ihsesp/214.html
   My bibliography  Save this paper

Forecasting Global Flows

Author

Listed:
  • Skriner, Edith

    (Department of Economics and Finance, Institute for Advanced Studies, Vienna, Austria)

Abstract

The theory suggests that investment activities and monetary policy influence the development of the global business cycle. The oil price and other raw material prices also play a key role in the economic development and there is a co-movement among oil consumption and global output. Therefore, the aim of this study is to explain the development of this set of variables by ARs, small-scale VARs and ECMs. The lag length and the rank of the time series models have been determined using information criteria. Then one-step ahead forecasts have been generated. It was found, that the ARs generate the best forecasts at the beginning of the forecasting horizon. However, when the forecasting horizon increases the VARs outperform the ARs. Comparing the forecasting performance of the ECMs, it was found that the forecasting ability of the ECMs in first differences outperform the level based ECMs when the forecasting horizon increases.

Suggested Citation

  • Skriner, Edith, 2007. "Forecasting Global Flows," Economics Series 214, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:214
    as

    Download full text from publisher

    File URL: https://irihs.ihs.ac.at/id/eprint/1784
    File Function: First version, 2007
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    4. Edwards, Sebastian, 1998. "Openness, Productivity and Growth: What Do We Really Know?," Economic Journal, Royal Economic Society, vol. 108(447), pages 383-398, March.
    5. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
    6. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    7. Eswar S. Prasad & Jeffery A. Gable, 1998. "International Evidence on the Determinants of Trade Dynamics," IMF Staff Papers, Palgrave Macmillan, vol. 45(3), pages 401-439, September.
    8. Cashin, Paul & McDermott, C. John & Scott, Alasdair, 2002. "Booms and slumps in world commodity prices," Journal of Development Economics, Elsevier, vol. 69(1), pages 277-296, October.
    9. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    10. Mr. Ashoka Mody & Antu Panini Murshid, 2002. "Growing Up with Capital Flows," IMF Working Papers 2002/075, International Monetary Fund.
    11. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    12. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wsr:wpaper:y:2008:i:009 is not listed on IDEAS
    2. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    3. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    4. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    5. Edith Skriner, 2011. "Did Asset Prices Cause the Current Crisis?," Chapters, in: Óscar Dejuán & Eladio Febrero & Maria Cristina Marcuzzo (ed.), The First Great Recession of the 21st Century, chapter 9, Edward Elgar Publishing.
    6. Lance Bachmeier & Qi Li & Dandan Liu, 2008. "Should Oil Prices Receive So Much Attention? An Evaluation Of The Predictive Power Of Oil Prices For The U.S. Economy," Economic Inquiry, Western Economic Association International, vol. 46(4), pages 528-539, October.
    7. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    8. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    11. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    12. Jennifer L. Castle & Michael P. Clements & David F. Hendry, 2016. "An Overview of Forecasting Facing Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 3-23, September.
    13. Jennifer Castle & David Hendry, 2007. "Forecasting UK Inflation: the Roles of Structural Breaks and Time Disaggregation," Economics Series Working Papers 309, University of Oxford, Department of Economics.
    14. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    15. Muhammad Zeshan & Wasim Shahid Malik & Muhammad Nasir, 2019. "Oil Price Shocks, Systematic Monetary Policy and Economic Activity," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 58(1), pages 65-81.
    16. Alfred A. Haug & Christie Smith, 2012. "Local Linear Impulse Responses for a Small Open Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(3), pages 470-492, June.
    17. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    18. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    19. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    20. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
    21. João Valle e Azevedo, 2013. "Macroeconomic Forecasting Using Low-Frequency Filters," Working Papers w201301, Banco de Portugal, Economics and Research Department.

    More about this item

    Keywords

    International economics; time series models; forecasts; forecast evaluation;
    All these keywords.

    JEL classification:

    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doris Szoncsitz (email available below). General contact details of provider: https://edirc.repec.org/data/deihsat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.