IDEAS home Printed from https://ideas.repec.org/p/idb/wpaper/idb-wp-450.html
   My bibliography  Save this paper

Intensity-Based Permit Quotas and the Business Cycle: Does Flexibility Pay Off?

Author

Listed:
  • Olli-Pekka Kuuselaa
  • Gregory S. Amacher
  • Kwok Ping Tsang

Abstract

Tradable permit markets for carbon dioxide (C02) emissions respond to short-run fluctuations in economic activity. To provide stability, both price and quantity interventions have been proposed. This paper focuses on the relative performance of fixed versus intensity allowances in the presence of both productivity and energy price uncertainty. Both instruments achieve the same steady-state emissions reduction target of 20 percent, which is similar to the current policy proposals, and the regulator then chooses the allowance policy that has the lowest expected abatement cost. A standard real business cycle (RBC) model is used to solve for the expected abatement cost under both policies. Expected cost outcomes are compared using data from the U. S. economy as the baseline scenario. Unlike previous studies, this paper’s results show that, under a reasonable model calibration, fixed allowances outperform intensity allowances by a cost difference of as much as 30 percent.

Suggested Citation

  • Olli-Pekka Kuuselaa & Gregory S. Amacher & Kwok Ping Tsang, 2013. "Intensity-Based Permit Quotas and the Business Cycle: Does Flexibility Pay Off?," Research Department Publications IDB-WP-450, Inter-American Development Bank, Research Department.
  • Handle: RePEc:idb:wpaper:idb-wp-450
    as

    Download full text from publisher

    File URL: http://www.iadb.org/research/pub_hits.cfm?pub_id=38204670
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zhao, Jinhua, 2003. "Irreversible abatement investment under cost uncertainties: tradable emission permits and emissions charges," Journal of Public Economics, Elsevier, vol. 87(12), pages 2765-2789, December.
    2. Fell, Harrison & MacKenzie, Ian A. & Pizer, William A., 2012. "Prices versus quantities versus bankable quantities," Resource and Energy Economics, Elsevier, vol. 34(4), pages 607-623.
    3. Harald F. Uhlig, 1995. "A toolkit for analyzing nonlinear dynamic stochastic models easily," Discussion Paper / Institute for Empirical Macroeconomics 101, Federal Reserve Bank of Minneapolis.
    4. Goulder, Lawrence H. & Parry, Ian W. H. & Williams III, Roberton C. & Burtraw, Dallas, 1999. "The cost-effectiveness of alternative instruments for environmental protection in a second-best setting," Journal of Public Economics, Elsevier, vol. 72(3), pages 329-360, June.
    5. Richard Newell & William Pizer & Jiangfeng Zhang, 2005. "Managing Permit Markets to Stabilize Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 133-157, June.
    6. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    7. Frank Jotzo & John Pezzey, 2007. "Optimal intensity targets for greenhouse gas emissions trading under uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(2), pages 259-284, October.
    8. Alexandre Kossoy & Pierre Guigon, "undated". "State and Trends of the Carbon Market 2012," World Bank Other Operational Studies 13336, The World Bank.
    9. Newell, Richard G. & Pizer, William A., 2003. "Regulating stock externalities under uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 416-432, March.
    10. Finn, Mary G, 2000. "Perfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 400-416, August.
    11. William A. Pizer, 2005. "The case for intensity targets," Climate Policy, Taylor & Francis Journals, vol. 5(4), pages 455-462, July.
    12. Rotemberg, Julio J & Woodford, Michael, 1996. "Imperfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(4), pages 550-577, November.
    13. Quirion, Philippe, 2005. "Does uncertainty justify intensity emission caps?," Resource and Energy Economics, Elsevier, vol. 27(4), pages 343-353, November.
    14. Rajeev Dhawan & Karsten Jeske, 2008. "Energy Price Shocks and the Macroeconomy: The Role of Consumer Durables," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(7), pages 1357-1377, October.
    15. Kolstad, Charles D., 2005. "The simple analytics of greenhouse gas emission intensity reduction targets," Energy Policy, Elsevier, vol. 33(17), pages 2231-2236, November.
    16. Kim, In-Moo & Loungani, Prakash, 1992. "The role of energy in real business cycle models," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 173-189, April.
    17. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    18. Baldursson, Fridrik M & von der Fehr, N.-H.M.Nils-Henrik M, 2004. "Price volatility and risk exposure: on market-based environmental policy instruments," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 682-704, July.
    19. repec:wbk:wboper:13335 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jo, Soojin & Karnizova, Lilia & Reza, Abeer, 2019. "Industry effects of oil price shocks: A re-examination," Energy Economics, Elsevier, vol. 82(C), pages 179-190.
    2. Annicchiarico, Barbara & Di Dio, Fabio, 2015. "Environmental policy and macroeconomic dynamics in a new Keynesian model," Journal of Environmental Economics and Management, Elsevier, vol. 69(C), pages 1-21.
    3. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    4. Kato, Shinya & Takeuchi, Kenji, 2017. "A CGE analysis of a rate-based policy for climate change mitigation," Journal of the Japanese and International Economies, Elsevier, vol. 43(C), pages 88-95.
    5. Andrian, Leandro Gaston, 2010. "Essays on energy economics: Microeconomic and macroeconomic dimensions," ISU General Staff Papers 201001010800002725, Iowa State University, Department of Economics.
    6. Amir Yaron & Steffen Hitzemann, 2017. "Welfare Costs of Oil Shocks," 2017 Meeting Papers 1381, Society for Economic Dynamics.
    7. Newell, Richard G. & Pizer, William A., 2008. "Indexed regulation," Journal of Environmental Economics and Management, Elsevier, vol. 56(3), pages 221-233, November.
    8. Gideon Bornstein & Per Krusell & Sergio Rebelo, 2017. "A World Equilibrium Model of the Oil Market," NBER Working Papers 23423, National Bureau of Economic Research, Inc.
    9. Pezzey, John C.V. & Jotzo, Frank, 2010. "Tax-Versus-Trading and Free Emission Shares as Issues for Climate Policy Design," Research Reports 95049, Australian National University, Environmental Economics Research Hub.
    10. Shreekar Pradhan & J. Scott Holladay & Mohammed Mohsin & Shreekar Pradhan, 2015. "Environmental Policy Instruments and Uncertainties Under Free Trade and Capital Mobility," EcoMod2015 8102, EcoMod.
    11. Hanley Nick & MacKenzie Ian A, 2010. "The Effects of Rent Seeking over Tradable Pollution Permits," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-26, July.
    12. Annicchiarico, Barbara & Diluiso, Francesca, 2019. "International transmission of the business cycle and environmental policy," Resource and Energy Economics, Elsevier, vol. 58(C).
    13. Branger, Frédéric & Quirion, Philippe, 2014. "Price versus Quantities versus Indexed Quantities," Climate Change and Sustainable Development 187277, Fondazione Eni Enrico Mattei (FEEM).
    14. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    15. Naohisa Hirakata & Nao Sudo, 2009. "Accounting for Oil Price Variation and Weakening Impact of the Oil Crisis," IMES Discussion Paper Series 09-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
    16. Francesca Rondina, 2017. "The Impact of Oil Price Changes in a New Keynesian Model of the U.S. Economy," Working Papers 1709E, University of Ottawa, Department of Economics.
    17. Barbara Annicchiarico & Fabio Di Dio, 2017. "GHG Emissions Control and Monetary Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 823-851, August.
    18. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    19. Luís Francisco Aguiar-Conraria & Yi Wen, 2005. "Understanding the Impact of Oil Shocks," NIPE Working Papers 2/2005, NIPE - Universidade do Minho.
    20. Xavier Labandeira & Baltazar Manzano, 2012. "Some Economic Aspects of Energy Security," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 47-64.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:idb:wpaper:idb-wp-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Felipe Herrera Library). General contact details of provider: https://edirc.repec.org/data/iadbbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.