IDEAS home Printed from https://ideas.repec.org/p/ias/cpaper/15-wp556.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Land Resilience and Tail Dependence among Crop Yield Distributions

Author

Abstract

Rate setting procedures for United States crop yield and revenue insurance contracts employ methods that presume correlations to be state invariant. Whether this is true matters. If yield-yield correlations strengthen when crops are subject to widespread stress, then diversification opportunities for private insurers weaken when most needed, and an insurer's portfolio of retained business may not be as diversified as standard statistics would suggest. For government outlays, such tail dependence will increase the transactions and political costs of reallocations from the general fund. In this paper we propose a simple model of yield correlations according to interactions between a weather outcome and a land unit's yield resilience to adverse shocks, as might be measured by the United States Soil Conservation Service's land capability classification. Our model shows that yield-yield tail dependence is to be expected and, furthermore, should take a particular form. In better growing regions, yield correlations across units should be stronger in right tails than in left tails, whereas in marginal growing regions the reverse should apply. Using USDA Risk Management Agency unit level data and a variety of statistics, we find strong evidence in favor of this land yield resilience hypothesis. Our findings call into question the appropriateness of current USDA rate-setting methodologies, which posit constant state-conditional ordinal correlations by implicitly assuming that yields can be represented by a Gaussian copula. A goodness-of-fit test rejects the standard Gaussian copula model, implying that existing RMA rate-setting methods are deficient.

Suggested Citation

  • Xiaodong Du & David A. Hennessy & Hongli Feng, 2015. "Land Resilience and Tail Dependence among Crop Yield Distributions," Center for Agricultural and Rural Development (CARD) Publications 15-wp556, Center for Agricultural and Rural Development (CARD) at Iowa State University.
  • Handle: RePEc:ias:cpaper:15-wp556
    as

    Download full text from publisher

    File URL: https://www.card.iastate.edu/products/publications/pdf/15wp556.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://www.card.iastate.edu/products/publications/synopsis/?p=1236
    File Function: Online Synopsis
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Berck & Gloria Helfand, 1990. "Reconciling the von Liebig and Differentiable Crop Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 985-996.
    2. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    3. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    4. Joseph W. Glauber, 2013. "The Growth Of The Federal Crop Insurance Program, 1990--2011," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 482-488.
    5. Richard E. Just & Linda Calvin & John Quiggin, 1999. "Adverse Selection in Crop Insurance: Actuarial and Asymmetric Information Incentives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(4), pages 834-849.
    6. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    7. Xiaodong Du & David A. Hennessy & Hongli Feng, 2014. "A Natural Resource Theory of U.S. Crop Insurance Contract Choice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 232-252.
    8. Gustafson, Robert L., 1958. "Carryover levels for grains: A method for determining amounts that are optimal under specified conditions," Technical Bulletins 157231, United States Department of Agriculture, Economic Research Service.
    9. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    10. J. Dhaene & S. Vanduffel & M. Goovaerts, 2007. "Comonotonicity," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 265-278.
    11. Barry K. Goodwin & Ashley Hungerford, 2015. "Copula-Based Models of Systemic Risk in U.S. Agriculture: Implications for Crop Insurance and Reinsurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 879-896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Negi, Digvijay S., 2018. "Tail-dependent Rainfall Risk and Demand for Index based Crop Insurance," 2018 Annual Meeting, August 5-7, Washington, D.C. 274481, Agricultural and Applied Economics Association.
    2. Xuche Gong & David A. Hennessy & Hongli Feng, 2023. "Systemic risk, relative subsidy rates, and area yield insurance choice," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 888-913, May.
    3. Yaoyao Wu & Hanqi Liao & Lei Fang & Guizhen Guo, 2023. "Quantitative Study on Agricultural Premium Rate and Its Distribution in China," Land, MDPI, vol. 12(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Xiaodong & Hennessy, David & Feng, Hongli, 2014. "Tail Dependence is to be Expected Among Crop Yields," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 174315, Agricultural and Applied Economics Association.
    2. Jisang Yu & Daniel A. Sumner, 2018. "Effects of subsidized crop insurance on crop choices," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 533-545, July.
    3. Ahmed, Osama & Serra, Teresa, 2015. "Evaluate the economic consequences of revenue insurance programs in Spain using copula models. The case of orange and apple," 2015 Conference, August 9-14, 2015, Milan, Italy 212522, International Association of Agricultural Economists.
    4. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    5. Xiaodong Du & Hongli Feng & David A. Hennessy, 2017. "Rationality of Choices in Subsidized Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 732-756.
    6. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    7. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    8. Mavroutsikos, Charalampos & Giannakas, Konstantinos & Walters, Cory G., 2018. "Crop Insurance under Asymmetric Information and Different Government Objectives," 2018 Annual Meeting, August 5-7, Washington, D.C. 273880, Agricultural and Applied Economics Association.
    9. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    10. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    11. Zhichao Zhang & Li Ding & Fan Zhang & Zhuang Zhang, 2015. "Optimal Currency Composition for China's Foreign Reserves: A Copula Approach," The World Economy, Wiley Blackwell, vol. 38(12), pages 1947-1965, December.
    12. Xiaodong Du & Hongli Feng & David A. Hennessy, 2017. "Rationality of Choices in Subsidized Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 732-756.
    13. Shuoli Zhao & Chengyan Yue, 2020. "Risk preferences of commodity crop producers and specialty crop producers: An application of prospect theory," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 359-372, May.
    14. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    15. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    16. Harmon, Xavier & Boyer, Christopher N. & Lambert, Dayton M. & Larson, James A. & Gwathmey, C. Owen, 2016. "Comparing the Value of Soil Test Information Using Deterministic and Stochastic Yield Response Plateau Functions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    17. Yuyuan Che & Hongli Feng & David A. Hennessy, 2020. "Recency effects and participation at the extensive and intensive margins in the U.S. Federal Crop Insurance Program," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(1), pages 52-85, January.
    18. Yijin He & Shigeyuki Hamori, 2019. "Conditional Dependence between Oil Prices and Exchange Rates in BRICS Countries: An Application of the Copula-GARCH Model," JRFM, MDPI, vol. 12(2), pages 1-25, June.
    19. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    20. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.

    More about this item

    Keywords

    actuarial fairness; crop insurance; Gaussian copula; geography of yield distributions; reinsurance; systemic risk. JEL Codes: G12; Q18; C1.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ias:cpaper:15-wp556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/caiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.