IDEAS home Printed from
   My bibliography  Save this paper

Tweet-tales: moods of socio-economic crisis?


  • Grazia Biorci

    (CNR-Ircres, Genova)

  • Antonella Emina

    (CNR-Ircres, Moncalieri)

  • Michelangelo Puliga

    (IMT School for Advanced studies Lucca)

  • Lisa Sella

    (CNR-Ircres, Moncalieri)

  • Gianna Vivaldo

    (IMT School for Advanced studies Lucca)


The widespread adoption of highly interactive social media like Twitter, Facebook and other platforms allow users to communicate moods and opinions to their social network. Those platforms represent an unprecedented source of information about human habits and socio-economic interactions. Several new studies have started to exploit the potential of these big data as fingerprints of economic and social interactions. The present analysis aims at exploring the informative power of indicators derived from social media activity, with the aim to trace some preliminary guidelines to investigate the eventual correspondence between social media indices and available labour market indicators at a territorial level. The study is based on a large dataset of about 4 million Italian-language tweets collected from October 2014 to December 2015, filtered by a set of specific keywords related to the labour market. With techniques from machine learning and user’s geolocalization, we were able to subset the tweets on specific topics in all Italian provinces. The corpus of tweets is then analyzed with linguistic tools and hierarchical clustering analysis. A comparison with traditional economic indicators suggests a strong need for further cleaning procedures, which are then developed in detail. As data from social networks are easy to obtain, this represents a very first attempt to evaluate their informative power in the Italian context, which is of potentially high importance in economic and social research.

Suggested Citation

  • Grazia Biorci & Antonella Emina & Michelangelo Puliga & Lisa Sella & Gianna Vivaldo, 2016. "Tweet-tales: moods of socio-economic crisis?," Working Papers 04/2016, IMT School for Advanced Studies Lucca, revised Jul 2016.
  • Handle: RePEc:ial:wpaper:04/2016

    Download full text from publisher

    File URL:
    File Function: First version, 2016
    Download Restriction: no

    References listed on IDEAS

    1. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    2. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    3. Alejandro Llorente & Manuel Garcia-Herranz & Manuel Cebrian & Esteban Moro, 2015. "Social Media Fingerprints of Unemployment," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    4. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    5. Dolan Antenucci & Michael Cafarella & Margaret Levenstein & Christopher Ré & Matthew D. Shapiro, 2014. "Using Social Media to Measure Labor Market Flows," NBER Working Papers 20010, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    2. Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
    3. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    4. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    5. Pulkit Sharma & Achut Manandhar & Patrick Thomson & Jacob Katuva & Robert Hope & David A. Clifton, 2019. "Combining Multi-Modal Statistics for Welfare Prediction Using Deep Learning," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    6. John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353,
    7. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    8. Samara Ahmed & Adil E. Rajput & Akila Sarirete & Asma Aljaberi & Ohoud Alghanem & Abrar Alsheraigi, 2020. "Studying Unemployment Effects on Mental Health: Social Media versus the Traditional Approach," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    9. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
    10. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    11. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
    12. Yann Algan & Fabrice Murtin & Elizabeth Beasley & Kazuhito Higa & Claudia Senik, 2019. "Well-being through the lens of the internet," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-23, January.
    13. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    14. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    15. Nathan, Max & Rosso, Anna & Bouet, Francois, 2014. "Mapping 'Information Economy' Businesses with Big Data: Findings for the UK," IZA Discussion Papers 8662, Institute of Labor Economics (IZA).
    16. Shu-Heng Chen & Ragupathy Venkatachalam, 2017. "Information aggregation and computational intelligence," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 231-252, June.
    17. Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
    18. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    19. Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    20. Indaco, Agustín, 2020. "From twitter to GDP: Estimating economic activity from social media," Regional Science and Urban Economics, Elsevier, vol. 85(C).

    More about this item


    Big data; social media; Twitter; hierarchical clustering; unemployment;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ial:wpaper:04/2016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Leonardo Mezzina (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.