IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.09353.html
   My bibliography  Save this paper

Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods

Author

Listed:
  • John M. Abowd
  • Ian M. Schmutte
  • William Sexton
  • Lars Vilhuber

Abstract

With vast databases at their disposal, private tech companies can compete with public statistical agencies to provide population statistics. However, private companies face different incentives to provide high-quality statistics and to protect the privacy of the people whose data are used. When both privacy protection and statistical accuracy are public goods, private providers tend to produce at least one suboptimally, but it is not clear which. We model a firm that publishes statistics under a guarantee of differential privacy. We prove that provision by the private firm results in inefficiently low data quality in this framework.

Suggested Citation

  • John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353, arXiv.org.
  • Handle: RePEc:arx:papers:1906.09353
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.09353
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Acquisti & Curtis Taylor & Liad Wagman, 2016. "The Economics of Privacy," Journal of Economic Literature, American Economic Association, vol. 54(2), pages 442-492, June.
    2. Dolan Antenucci & Michael Cafarella & Margaret Levenstein & Christopher Ré & Matthew D. Shapiro, 2014. "Using Social Media to Measure Labor Market Flows," NBER Working Papers 20010, National Bureau of Economic Research, Inc.
    3. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    4. Goldfarb, Avi & Greenstein, Shane M. & Tucker, Catherine E. (ed.), 2015. "Economic Analysis of the Digital Economy," National Bureau of Economic Research Books, University of Chicago Press, number 9780226206981.
    5. Avi Goldfarb & Shane M. Greenstein & Catherine E. Tucker, 2015. "Introduction to "Economic Analysis of the Digital Economy"," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 1-17, National Bureau of Economic Research, Inc.
    6. Ori Heffetz & Katrina Ligett, 2014. "Privacy and Data-Based Research," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 75-98, Spring.
    7. John M. Abowd & Ian M. Schmutte, 2019. "An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices," American Economic Review, American Economic Association, vol. 109(1), pages 171-202, January.
    8. Avi Goldfarb & Shane M. Greenstein & Catherine E. Tucker, 2015. "Economic Analysis of the Digital Economy," NBER Books, National Bureau of Economic Research, Inc, number gree13-1, May.
    9. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    10. Ghosh, Arpita & Roth, Aaron, 2015. "Selling privacy at auction," Games and Economic Behavior, Elsevier, vol. 91(C), pages 334-346.
    11. A. Michael Spence, 1975. "Monopoly, Quality, and Regulation," Bell Journal of Economics, The RAND Corporation, vol. 6(2), pages 417-429, Autumn.
    12. Wasserman, Larry & Zhou, Shuheng, 2010. "A Statistical Framework for Differential Privacy," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 375-389.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
    2. Antonelli, Cristiano & Tubiana, Matteo, 2020. "Income inequality in the knowledge economy," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 153-164.
    3. Jeremy Watson, 2017. "What is the Value of Re-use? Complementarities in Popular Music," Working Papers 17-15, NET Institute.
    4. Engels, Barbara, 2016. "Data portability among online platforms," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 5(2), pages 1-17.
    5. Rachel Cummings & Federico Echenique & Adam Wierman, 2016. "The Empirical Implications of Privacy-Aware Choice," Operations Research, INFORMS, vol. 64(1), pages 67-78, February.
    6. Katherine B. Coffman & Lucas C. Coffman & Keith M. Marzilli Ericson, 2017. "The Size of the LGBT Population and the Magnitude of Antigay Sentiment Are Substantially Underestimated," Management Science, INFORMS, vol. 63(10), pages 3168-3186, October.
    7. Justin Longo & Alan Rodney Dobell, 2018. "The Limits of Policy Analytics: Early Examples and the Emerging Boundary of Possibilities," Politics and Governance, Cogitatio Press, vol. 6(4), pages 5-17.
    8. Poza, Carlos & Monge, Manuel, 2020. "A real time leading economic indicator based on text mining for the Spanish economy. Fractional cointegration VAR and Continuous Wavelet Transform analysis," International Economics, Elsevier, vol. 163(C), pages 163-175.
    9. John M. Abowd & Ian M. Schmutte, 2017. "Revisiting the Economics of Privacy: Population Statistics and Confidentiality Protection as Public Goods," Working Papers 17-37, Center for Economic Studies, U.S. Census Bureau.
    10. Raj Chetty & John N. Friedman, 2019. "A Practical Method to Reduce Privacy Loss When Disclosing Statistics Based on Small Samples," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 414-420, May.
    11. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Jeffrey C. Chen & Abe Dunn & Kyle Hood & Alexander Driessen & Andrea Batch, 2019. "Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators," NBER Chapters, in: Big Data for Twenty-First Century Economic Statistics, National Bureau of Economic Research, Inc.
    13. Rehse, Dominik & Tremöhlen, Felix, 2020. "Fostering participation in digital public health interventions: The case of digital contact tracing," ZEW Discussion Papers 20-076, ZEW - Leibniz Centre for European Economic Research.
    14. Janis Cloos & Björn Frank & Lukas Kampenhuber & Stephany Karam & Nhat Luong & Daniel Möller & Maria Monge-Larrain & Nguyen Tan Dat & Marco Nilgen & Christoph Rössler, 2019. "Is Your Privacy for Sale? An Experiment on the Willingness to Reveal Sensitive Information," Games, MDPI, Open Access Journal, vol. 10(3), pages 1-15, July.
    15. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    16. Rod Garratt & Maarten van Oordt, 2019. "Systemic Privacy as a Public Good: A Case for Electronic Cash," Staff Working Papers 19-24, Bank of Canada.
    17. Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW).
    18. Resce, Giuliano & Maynard, Diana, 2018. "What matters most to people around the world? Retrieving Better Life Index priorities on Twitter," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 61-75.
    19. Susan Athey & Michael Luca, 2019. "Economists (and Economics) in Tech Companies," Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 209-230, Winter.
    20. Forbes, Silke J., 2008. "The effect of air traffic delays on airline prices," International Journal of Industrial Organization, Elsevier, vol. 26(5), pages 1218-1232, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.09353. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.