IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2017-026.html
   My bibliography  Save this paper

Dynamic Semiparametric Factor Model with a Common Break

Author

Listed:
  • Likai Chen
  • Weining Wang
  • Wei Biao Wu

Abstract

For change-point analysis of high dimensional time series, we consider a semiparametric model with dynamic structural break factors. The observations are described by a few low dimensional factors with time-invariate loading functions of covariates. The unknown structural break in time models the regime switching e ects introduced by exogenous shocks. In particular, the factors are assumed to be nonstationary and follow a Vector Autoregression (VAR) process with a structural break. In addition, to account for the known spatial discrepancies, we introduce discrete loading functions. We study the theoretical properties of the estimates of the loading functions and the factors. Moreover, we provide both the consistency and the asymptotic convergence results for making inference on the common breakpoint in time. The estimation precision is evaluated via a simulation study. Finally we present two empirical illustrations on modeling the dynamics of the minimum wage policy in China and analyzing a limit order book dataset.

Suggested Citation

  • Likai Chen & Weining Wang & Wei Biao Wu, 2017. "Dynamic Semiparametric Factor Model with a Common Break," SFB 649 Discussion Papers SFB649DP2017-026, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2017-026
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2017-026.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Huang, Yi & Loungani, Prakash & Wang, Gewei, 2014. "Minimum wages and firm employment: evidence from China," Globalization and Monetary Policy Institute Working Paper 173, Federal Reserve Bank of Dallas.
    2. Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410.
    3. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    4. Gregory Connor & Matthias Hagmann & Oliver Linton, 2012. "Efficient Semiparametric Estimation of the Fama–French Model and Extensions," Econometrica, Econometric Society, vol. 80(2), pages 713-754, March.
    5. Wolfgang K. Härdle & Piotr Majer, 2016. "Yield curve modeling and forecasting using semiparametric factor dynamics," The European Journal of Finance, Taylor & Francis Journals, vol. 22(12), pages 1109-1129, September.
    6. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," Review of Economic Studies, Oxford University Press, vol. 83(4), pages 1511-1543.
    9. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    10. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    11. Wied, Dominik & Krämer, Walter & Dehling, Herold, 2012. "Testing For A Change In Correlation At An Unknown Point In Time Using An Extended Functional Delta Method," Econometric Theory, Cambridge University Press, vol. 28(03), pages 570-589, June.
    12. Holger Dette & Dominik Wied, 2016. "Detecting relevant changes in time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 371-394, March.
    13. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    14. Ralf Brüggemann & Wolfgang Härdle & Julius Mungo & Carsten Trenkler, 2008. "VAR Modeling for Dynamic Loadings Driving Volatility Strings," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 361-381, Summer.
    15. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    16. Stefan Trück & Wolfgang Härdle & Rafal Weron, 2012. "The relationship between spot and futures CO2 emission allowance prices in the EU-ETS," HSC Research Reports HSC/12/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Stryhn, Henrik, 1996. "The location of the maximum of asymmetric two-sided Brownian motion with triangular drift," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 279-284, September.
    18. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    19. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    20. Alena Bömmel & Song Song & Piotr Majer & Peter Mohr & Hauke Heekeren & Wolfgang Härdle, 2014. "Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 489-514, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    high dimensional time series; change-point analysis; temporal and cross-sectional dependence; vector autoregressive process;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2017-026. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.