IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

CDO Surfaces Dynamics

  • Barbara ChoroÅ›-Tomczyk
  • Wolfgang Karl Härdle
  • Ostap Okhrin

Modelling the dynamics of credit derivatives is a challenging task in finance and economics. The recent crisis has shown that the standard market models fail to measure and forecast financial risks and their characteristics. This work studies risk of collateralized debt obligations (CDOs) by investigating the evolution of tranche spread surfaces and base correlation surfaces using a dynamic semiparametric factor model (DSFM). The DSFM offers a combination of flexible functional data analysis and dimension reduction methods, where the change in time is linear but the shape is nonparametric. The study provides an empirical analysis based on iTraxx Europe tranches and proposes an application to curve trading strategies. The DSFM allows us to describe the dynamics of all the tranches for all available maturities and series simultaneously which yields better understanding of the risk associated with trading CDOs and other structured products.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2013-032.pdf
Download Restriction: no

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2013-032.

as
in new window

Length: 33 pages
Date of creation: Jul 2013
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2013-032
Contact details of provider: Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Web page: http://sfb649.wiwi.hu-berlin.de
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2009. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," CFS Working Paper Series 2009/18, Center for Financial Studies (CFS).
  2. Szymon Borak & Wolfgang Härdle & Enno Mammen & Byeong U. Park, 2007. "Time Series Modelling with Semiparametric Factor Dynamics," SFB 649 Discussion Papers SFB649DP2007-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  3. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2012. "Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 521-532, May.
  4. Matthias R. Fengler & Wolfgang K. H�rdle & Enno Mammen, 0. "A semiparametric factor model for implied volatility surface dynamics," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(2), pages 189-218.
  5. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503.
  6. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
  7. Xueli Liu & Hans-Georg Muller, 2004. "Functional Convex Averaging and Synchronization for Time-Warped Random Curves," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 687-699, January.
  8. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  9. Alena Bömmel & Song Song & Piotr Majer & Peter Mohr & Hauke Heekeren & Wolfgang Härdle, 2014. "Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study," Psychometrika, Springer, vol. 79(3), pages 489-514, July.
  10. Enzo Giacomini & Wolfgang Härdle & Volker Krätschmer, 2009. "Dynamic semiparametric factor models in risk neutral density estimation," AStA Advances in Statistical Analysis, Springer, vol. 93(4), pages 387-402, December.
  11. Christian Gourieroux & Joann Jasiak, 2001. "Dynamic Factor Models," Econometric Reviews, Taylor & Francis Journals, vol. 20(4), pages 385-424.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2013-032. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.