IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v146y2016icp151-163.html
   My bibliography  Save this article

A semiparametric factor model for CDO surfaces dynamics

Author

Listed:
  • Choroś-Tomczyk, Barbara
  • Härdle, Wolfgang Karl
  • Okhrin, Ostap

Abstract

Modelling the dynamics of credit derivatives is a challenging task in finance and economics. This work studies risk of collateralized debt obligations (CDOs) by investigating the evolution of tranche spread surfaces and base correlation surfaces using a dynamic semiparametric factor model (DSFM). The DSFM offers a combination of flexible functional data analysis and dimension reduction methods, where the change in time is linear but the shape is nonparametric. The study provides an empirical analysis based on a big data set of iTraxx Europe tranches and proposes an application to curve trading strategies. The DSFM allows us to describe the dynamics of all the tranches for all available maturities and series simultaneously which yields better understanding of the risk associated with trading CDOs and other structured products.

Suggested Citation

  • Choroś-Tomczyk, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2016. "A semiparametric factor model for CDO surfaces dynamics," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 151-163.
  • Handle: RePEc:eee:jmvana:v:146:y:2016:i:c:p:151-163
    DOI: 10.1016/j.jmva.2015.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002158
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    2. Xueli Liu & Hans-Georg Muller, 2004. "Functional Convex Averaging and Synchronization for Time-Warped Random Curves," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 687-699, January.
    3. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503.
    4. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    5. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    6. Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2014. "Generalized dynamic semi‐parametric factor models for high‐dimensional non‐stationary time series," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 101-131, June.
    7. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    8. Alena Bömmel & Song Song & Piotr Majer & Peter Mohr & Hauke Heekeren & Wolfgang Härdle, 2014. "Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 489-514, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petra Burdejová & Wolfgang K. Härdle, 2017. "Dynamic semi-parametric factor model for functional expectiles," SFB 649 Discussion Papers SFB649DP2017-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    CDO; Curve trade; Dynamic factor model; Semiparametric model; Surfaces dynamics;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:146:y:2016:i:c:p:151-163. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.