IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/99-08.html
   My bibliography  Save this paper

Dynamic Factor Models

Author

Listed:
  • Christian Gourieroux

    (Crest)

  • Joanna Jasiak

    (Crest)

Abstract

This paper introduces nonlinear dynamic factor models for various applications related to risk analysis. Traditional factor models represent the dynamics of processes driven by movements of latent variables, called the factors. Our approach extends this setup by introducing factors defined as random dynamic parameters and stochastic autocorrelated simulators. This class of factor models can represent processes with time varying conditional mean, variance, skewness and excess kurtosis. Applications discussed in the paper include dynamic risk analysis, such as risk in price variations (models with stochastic mean and volatility), extreme risks (models with stochastic tails), risk on asset liquidity (stochastic volatility duration models), and moral hazard in insurance analysis. We propose estimation procedures for models with the marginal density of the series and factor dynamics parameterized by distinct subsets of parameters. Such a partitioning of the parameter vector found in many applications allows to simplify considerably statistical inference. We develop a two- stage Maximum Likelihood method, called the Finite Memory Maximum Likelihood, which is easy to implement in the presence of multiple factors. We also discuss simulation based estimation, testing, prediction and filtering.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Christian Gourieroux & Joanna Jasiak, 1999. "Dynamic Factor Models," Working Papers 99-08, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:99-08
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/1999-08.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    2. David Mihaela & Jemna Dănuţ-Vasile, 2015. "Modeling the Frequency of Auto Insurance Claims by Means of Poisson and Negative Binomial Models," Scientific Annals of Economics and Business, Sciendo, vol. 62(2), pages 151-168, July.
    3. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    4. Gagliardini, Patrick & Gouriéroux, Christian, 2013. "Correlated risks vs contagion in stochastic transition models," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2241-2269.
    5. repec:hum:wpaper:sfb649dp2013-032 is not listed on IDEAS
    6. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    7. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    8. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Choros-Tomczyk, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2013. "CDO surfaces dynamics," SFB 649 Discussion Papers 2013-032, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Michele Campolieti & Deborah Gefang & Gary Koop, 2013. "A new look at variation in employment growth in Canada," Working Papers 26145565, Lancaster University Management School, Economics Department.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C - Mathematical and Quantitative Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:99-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.