IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.19796.html

Threshold Tensor Factor Model in CP Form

Author

Listed:
  • Stevenson Bolivar
  • Rong Chen
  • Yuefeng Han

Abstract

This paper proposes a new Threshold Tensor Factor Model in Canonical Polyadic (CP) form for tensor time series. By integrating a thresholding autoregressive structure for the latent factor process into the tensor factor model in CP form, the model captures regime-switching dynamics in the latent factor processes while retaining the parsimony and interpretability of low-rank tensor representations. We develop estimation procedures for the model and establish the theoretical properties of the resulting estimators. Numerical experiments and a real-data application illustrate the practical performance and usefulness of the proposed framework.

Suggested Citation

  • Stevenson Bolivar & Rong Chen & Yuefeng Han, 2025. "Threshold Tensor Factor Model in CP Form," Papers 2511.19796, arXiv.org.
  • Handle: RePEc:arx:papers:2511.19796
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.19796
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    2. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    3. Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
    4. Christian Gourieroux & Joann Jasiak, 2001. "Dynamic Factor Models," Econometric Reviews, Taylor & Francis Journals, vol. 20(4), pages 385-424.
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    7. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    8. Elynn Y. Chen & Jianqing Fan, 2023. "Statistical Inference for High-Dimensional Matrix-Variate Factor Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1038-1055, April.
    9. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    10. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    11. Elynn Y. Chen & Ruey S. Tsay & Rong Chen, 2020. "Constrained Factor Models for High-Dimensional Matrix-Variate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 775-793, April.
    12. Xinyu Zhang & Dong Li & Howell Tong, 2024. "On the Least Squares Estimation of Multiple-Threshold-Variable Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 215-228, January.
    13. Magdalena Osińska & Tadeusz Kufel & Marcin Błażejowski & Paweł Kufel, 2020. "Modeling mechanism of economic growth using threshold autoregression models," Empirical Economics, Springer, vol. 58(3), pages 1381-1430, March.
    14. Wang, Di & Zheng, Yao & Li, Guodong, 2024. "High-dimensional low-rank tensor autoregressive time series modeling," Journal of Econometrics, Elsevier, vol. 238(1).
    15. Li, Dong & Ling, Shiqing, 2012. "On the least squares estimation of multiple-regime threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 167(1), pages 240-253.
    16. Liu, Xialu & Chen, Rong, 2020. "Threshold factor models for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 53-70.
    17. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    18. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    19. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    20. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    21. Clifford Lam & Qiwei Yao & Neil Bathia, 2011. "Estimation of latent factors for high-dimensional time series," Biometrika, Biometrika Trust, vol. 98(4), pages 901-918.
    22. Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
    23. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    24. Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
    25. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    26. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    27. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    28. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    29. Xialu Liu & Elynn Y. Chen, 2022. "Identification and estimation of threshold matrix‐variate factor models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1383-1417, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2025. "Improving estimation of portfolio risk using new statistical factors," Annals of Operations Research, Springer, vol. 346(1), pages 245-261, March.
    2. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    3. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    4. Zhang, Yuteng & Hui, Yongchang & Song, Junrong & Zheng, Shurong, 2025. "Multilevel matrix factor model," Journal of Econometrics, Elsevier, vol. 251(C).
    5. Zhiyun Fan & Xiaoyu Zhang & Di Wang, 2025. "A Hybrid Framework Combining Autoregression and Common Factors for Matrix Time Series," Papers 2503.05340, arXiv.org, revised Jan 2026.
    6. Matteo Barigozzi & Luca Trapin, 2025. "Estimation of large approximate dynamic matrix factor models based on the EM algorithm and Kalman filtering," Papers 2502.04112, arXiv.org, revised Jan 2026.
    7. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    8. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    9. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    10. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    11. Cen, Zetai & Lam, Clifford, 2025. "Tensor time series imputation through tensor factor modelling," Journal of Econometrics, Elsevier, vol. 249(PB).
    12. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    13. Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
    14. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    15. Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
    16. Cen, Zetai & Lam, Clifford, 2025. "Tensor time series imputation through tensor factor modelling," LSE Research Online Documents on Economics 127231, London School of Economics and Political Science, LSE Library.
    17. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    18. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    19. Lee, Chung Eun & Zhang, Xin, 2024. "Conditional mean dimension reduction for tensor time series," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    20. Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.19796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.