IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/127231.html
   My bibliography  Save this paper

Tensor time series imputation through tensor factor modelling

Author

Listed:
  • Cen, Zetai
  • Lam, Clifford

Abstract

We propose tensor time series imputation when the missing pattern in the tensor data can be general, as long as any two data positions along a tensor fibre are both observed for enough time points. The method is based on a tensor time series factor model with Tucker decomposition of the common component. One distinguished feature of the tensor time series factor model used is that there can be weak factors in the factor loading matrix for each mode. This reflects reality better when real data can have weak factors which drive only groups of observed variables, for instance, a sector factor in a financial market driving only stocks in a particular sector. Using the data with missing entries, asymptotic normality is derived for rows of estimated factor loadings, while consistent covariance matrix estimation enables us to carry out inferences. As a first in the literature, we also propose a ratio-based estimator for the rank of the core tensor under general missing patterns. Rates of convergence are spelt out for the imputations from the estimated tensor factor models. Simulation results show that our imputation procedure works well, with asymptotic normality and corresponding inferences also demonstrated. Re-imputation performances are also gauged when we demonstrate that using slightly larger rank then estimated gives superior re-imputation performances. A Fama–French portfolio example with matrix returns and an OECD data example with matrix of economic indicators are presented and analysed, showing the efficacy of our imputation approach compared to direct vector imputation.

Suggested Citation

  • Cen, Zetai & Lam, Clifford, 2025. "Tensor time series imputation through tensor factor modelling," LSE Research Online Documents on Economics 127231, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:127231
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/127231/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong‐Fan Zhang, 2024. "Additive autoregressive models for matrix valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(3), pages 398-420, May.
    2. Trzcinka, Charles A, 1986. "On the Number of Factors in the Arbitrage Pricing Model," Journal of Finance, American Finance Association, vol. 41(2), pages 347-368, June.
    3. Chen, Weilin & Lam, Clifford, 2024. "Rank and factor loadings estimation in time series tensor factor model by pre-averaging," LSE Research Online Documents on Economics 121958, London School of Economics and Political Science, LSE Library.
    4. Elynn Y. Chen & Jianqing Fan, 2023. "Statistical Inference for High-Dimensional Matrix-Variate Factor Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1038-1055, April.
    5. Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023. "Factor-based imputation of missing values and covariances in panel data of large dimensions," Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
    6. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    7. Rong Chen & Dan Yang & Cun-Hui Zhang, 2022. "Factor Models for High-Dimensional Tensor Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 94-116, January.
    8. Jushan Bai & Serena Ng, 2021. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
    9. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    10. Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    13. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    14. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    15. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ruichao & Wu, Jianhong, 2023. "Determining the number of change-points in high-dimensional factor models by cross-validation with matrix completion," Economics Letters, Elsevier, vol. 232(C).
    2. Yinchu Zhu, 2019. "How well can we learn large factor models without assuming strong factors?," Papers 1910.10382, arXiv.org, revised Nov 2019.
    3. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    4. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    5. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    6. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    7. Matteo Barigozzi & Luca Trapin, 2025. "Estimation of large approximate dynamic matrix factor models based on the EM algorithm and Kalman filtering," Papers 2502.04112, arXiv.org, revised May 2025.
    8. Jungjun Choi & Ming Yuan, 2023. "Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models," Papers 2308.02364, arXiv.org.
    9. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    10. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    11. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    12. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    13. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    14. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    15. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    16. Zhiyun Fan & Xiaoyu Zhang & Mingyang Chen & Di Wang, 2025. "Matrix Time Series Modeling: A Hybrid Framework Combining Autoregression and Common Factors," Papers 2503.05340, arXiv.org.
    17. Klaus Abberger & Michael Graff & Boriss Siliverstovs & Jan-Egbert Sturm, 2014. "The KOF Economic Barometer, Version 2014," KOF Working papers 14-353, KOF Swiss Economic Institute, ETH Zurich.
    18. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    19. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    20. Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.

    More about this item

    Keywords

    generalized cross-covariance matrix; tensor unfolding; core tensor; α-mixing time series variables; missingness tensor;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:127231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.