IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v238y2024i1s0304407623002609.html
   My bibliography  Save this article

High-dimensional low-rank tensor autoregressive time series modeling

Author

Listed:
  • Wang, Di
  • Zheng, Yao
  • Li, Guodong

Abstract

Modern technological advances have enabled an unprecedented amount of structured data with complex temporal dependence, urging the need for new methods to efficiently model and forecast high-dimensional tensor-valued time series. This paper provides a new modeling framework to accomplish this task via autoregression (AR). By considering a low-rank Tucker decomposition for the transition tensor, the proposed tensor AR can flexibly capture the underlying low-dimensional tensor dynamics, providing both substantial dimension reduction and meaningful multi-dimensional dynamic factor interpretations. For this model, we first study several nuclear-norm-regularized estimation methods and derive their non-asymptotic properties under the approximate low-rank setting. In particular, by leveraging the special balanced structure of the transition tensor, a novel convex regularization approach based on the sum of nuclear norms of square matricizations is proposed to efficiently encourage low-rankness of the coefficient tensor. To further improve the estimation efficiency under exact low-rankness, a non-convex estimator is proposed with a gradient descent algorithm, and its computational and statistical convergence guarantees are established. Simulation studies and an empirical analysis of tensor-valued time series data from multi-category import-export networks demonstrate the advantages of the proposed approach.

Suggested Citation

  • Wang, Di & Zheng, Yao & Li, Guodong, 2024. "High-dimensional low-rank tensor autoregressive time series modeling," Journal of Econometrics, Elsevier, vol. 238(1).
  • Handle: RePEc:eee:econom:v:238:y:2024:i:1:s0304407623002609
    DOI: 10.1016/j.jeconom.2023.105544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623002609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bussière, Matthieu & Chudik, Alexander & Sestieri, Giulia, 2009. "Modelling global trade flows: results from a GVAR model," Working Paper Series 1087, European Central Bank.
    2. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    3. Yao Zheng & Guang Cheng, 2021. "Finite-time analysis of vector autoregressive models under linear restrictions [Nested reduced-rank autogressive models for multiple time series]," Biometrika, Biometrika Trust, vol. 108(2), pages 469-489.
    4. Rong Chen & Dan Yang & Cun-Hui Zhang, 2022. "Factor Models for High-Dimensional Tensor Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 94-116, January.
    5. Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023. "High-dimensional VARs with common factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
    6. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    7. Di Wang & Yao Zheng & Heng Lian & Guodong Li, 2022. "High-Dimensional Vector Autoregressive Time Series Modeling via Tensor Decomposition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1338-1356, September.
    8. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    9. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    10. Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
    11. Shanshan Ding & R. Dennis Cook, 2018. "Matrix variate regressions and envelope models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 387-408, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    2. Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
    3. Yugang He, 2024. "E-commerce and foreign direct investment: pioneering a new era of trade strategies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
    2. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    3. Matteo Barigozzi & Giuseppe Cavaliere & Graziano Moramarco, 2022. "Factor Network Autoregressions," Papers 2208.02925, arXiv.org, revised Feb 2024.
    4. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    5. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    6. Feldkircher, Martin, 2015. "A global macro model for emerging Europe," Journal of Comparative Economics, Elsevier, vol. 43(3), pages 706-726.
    7. Konstantakis, Konstantinos N. & Michaelides, Panayotis G., 2014. "Transmission of the debt crisis: From EU15 to USA or vice versa? A GVAR approach," Journal of Economics and Business, Elsevier, vol. 76(C), pages 115-132.
    8. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    9. Chisiridis, Konstantinos & Mouratidis, Kostas & Panagiotidis, Theodore, 2022. "The north-south divide, the euro and the world," Journal of International Money and Finance, Elsevier, vol. 121(C).
    10. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    11. Minoas Koukouritakis & Athanasios Papadopoulos & Andreas Yiannopoulos, 2013. "Linkages between the Eurozone and the South-Eastern European Countries: A VECMX Analysis," Working Papers 1302, University of Crete, Department of Economics.
    12. Mariam Camarero & Josep Lluís Carrion‐i‐Silvestre & Cecilio Tamarit, 2021. "External imbalances from a GVAR perspective," The World Economy, Wiley Blackwell, vol. 44(11), pages 3202-3245, November.
    13. Koukouritakis, Minoas & Papadopoulos, Athanasios P. & Yannopoulos, Andreas, 2015. "Linkages between the Eurozone and the South-Eastern European countries: A global VAR analysis," Economic Modelling, Elsevier, vol. 48(C), pages 129-154.
    14. Gauvin, Ludovic & Rebillard, Cyril, 2013. "Towards Recoupling? Assessing the Impact of a Chinese Hard Landing on Commodity Exporters: Results from Conditional Forecast in a GVAR Model," MPRA Paper 65457, University Library of Munich, Germany.
    15. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    16. Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
    17. Skouralis, Alexandros, 2021. "The role of systemic risk spillovers in the transmission of Euro Area monetary policy," ESRB Working Paper Series 129, European Systemic Risk Board.
    18. Ms. Hélène Poirson & Mr. Sebastian Weber, 2011. "Growth Spillover Dynamics From Crisis to Recovery," IMF Working Papers 2011/218, International Monetary Fund.
    19. Deniz Sevinc & Edgar Mata Flores, 2021. "Macroeconomic and financial implications of multi‐dimensional interdependencies between OECD countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 741-776, January.
    20. Piotr Kębłowski, 2021. "GVAR: A Case of Spurious Cross-Sectional Cointegration," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 175-187, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:238:y:2024:i:1:s0304407623002609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.