IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v93y2009i4p387-402.html
   My bibliography  Save this article

Dynamic semiparametric factor models in risk neutral density estimation

Author

Listed:
  • Enzo Giacomini

    ()

  • Wolfgang Härdle
  • Volker Krätschmer

Abstract

Dimension reduction techniques for functional data analysis model and approximate smooth random functions by lower dimensional objects. In many applications the focus of interest lies not only in dimension reduction but also in the dynamic behaviour of the lower dimensional objects. The most prominent dimension reduction technique - functional principal components analysis - however, does not model time dependences embedded in functional data. In this paper we use dynamic semiparametric factor models (DSFM) to reduce dimensionality and analyse the dynamic structure of unknown random functions by means of inference based on their lower dimensional representation. We apply DSFM to estimate the dynamic structure of risk neutral densities implied by prices of option on the DAX stock index.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Enzo Giacomini & Wolfgang Härdle & Volker Krätschmer, 2009. "Dynamic semiparametric factor models in risk neutral density estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 387-402, December.
  • Handle: RePEc:spr:alstar:v:93:y:2009:i:4:p:387-402
    DOI: 10.1007/s10182-009-0115-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-009-0115-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    2. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    4. Ralf Brüggemann & Wolfgang Härdle & Julius Mungo & Carsten Trenkler, 2008. "VAR Modeling for Dynamic Loadings Driving Volatility Strings," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 361-381, Summer.
    5. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    6. Hernández-Hernández, Daniel & Schied, Alexander, 2007. "A control approach to robust utility maximization with logarithmic utility and time-consistent penalties," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 980-1000, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Trück & Wolfgang Härdle & Rafal Weron, 2012. "The relationship between spot and futures CO2 emission allowance prices in the EU-ETS," HSC Research Reports HSC/12/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Barbara Choroś-Tomczyk & Wolfgang Karl Härdle & Ostap Okhrin, 2013. "CDO Surfaces Dynamics," SFB 649 Discussion Papers SFB649DP2013-032, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, Elsevier.
    4. Xiaofeng Cao & Ostap Okhrin & Martin Odening & Matthias Ritter, 2015. "Modelling spatio-temporal variability of temperature," Computational Statistics, Springer, vol. 30(3), pages 745-766, September.
    5. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    6. Ostap Okhrin & Stefan Trück, 2015. "Editorial to the special issue on Applicable semiparametrics of computational statistics," Computational Statistics, Springer, vol. 30(3), pages 641-646, September.
    7. Audrino, Francesco & Meier, Pirmin, 2012. "Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines," Economics Working Paper Series 1210, University of St. Gallen, School of Economics and Political Science.
    8. Maria Grith & Wolfgang Karl Härdle & Volker Krätschmer, 2013. "Reference Dependent Preferences and the EPK Puzzle," SFB 649 Discussion Papers SFB649DP2013-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    Dynamic factor models; Dimension reduction; Risk neutral density;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:93:y:2009:i:4:p:387-402. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.