IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2015-050.html
   My bibliography  Save this paper

Nonparametric Estimation in case of Endogenous Selection

Author

Listed:
  • Christoph Breunig
  • Enno Mammen
  • Anna Simoni

Abstract

This paper addresses the problem of estimation of a nonparametric regression function from selectively observed data when selection is endogenous. Our approach relies on independence between covariates and selection conditionally on potential outcomes. Endogeneity of regressors is also allowed for. In both cases, consistent two-step estimation procedures are proposed and their rates of convergence are derived. Also pointwise asymptotic distribution of the estimators is established. In addition, we propose a nonparametric specification test to check the validity of our independence assumption. Finite sample properties are illustrated in a Monte Carlo simulation study and an empirical illustration.

Suggested Citation

  • Christoph Breunig & Enno Mammen & Anna Simoni, "undated". "Nonparametric Estimation in case of Endogenous Selection," SFB 649 Discussion Papers SFB649DP2015-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2015-050
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2015-050.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Xiaohong Chen & Demian Pouzo, 2013. "Sieve Quasi Likelihood Ratio Inference on Semi/nonparametric Conditional Moment Models," Cowles Foundation Discussion Papers 1897, Cowles Foundation for Research in Economics, Yale University.
    2. repec:hrv:faseco:34728615 is not listed on IDEAS
    3. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    4. Yingyao Hu & Susanne M. Schennach, 2006. "Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments," CeMMAP working papers CWP17/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    6. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(06), pages 1265-1305, December.
    7. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    8. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    9. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    10. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    11. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    12. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    13. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    14. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    15. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    16. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    17. D’Haultfoeuille, Xavier & Maurel, Arnaud, 2013. "Another Look At The Identification At Infinity Of Sample Selection Models," Econometric Theory, Cambridge University Press, vol. 29(01), pages 213-224, February.
    18. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    19. Breunig, Christoph, 2015. "Goodness-of-fit tests based on series estimators in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 184(2), pages 328-346.
    20. Esmeralda A. Ramalho & Richard J. Smith, 2013. "Discrete Choice Non-Response," Review of Economic Studies, Oxford University Press, vol. 80(1), pages 343-364.
    21. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    2. Christoph Breunig, 2015. "Testing Missing at Random using Instrumental Variables," SFB 649 Discussion Papers SFB649DP2015-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Breunig, Christoph & Kummer, Michael & Ohnemus, Jörg & Viete, Steffen, 2016. "IT outsourcing and firm productivity: Eliminating bias from selective missingness in the dependent variable," ZEW Discussion Papers 16-092, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
    4. Christoph Breunig, 2017. "Testing Missing at Random using Instrumental Variables," SFB 649 Discussion Papers SFB649DP2017-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    Endogenous selection; instrumental variable; sieve minimum distance; regression estimation; convergence rate; asymptotic normality; hypothesis testing; inverse problem;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2015-050. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.