IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2011-077.html
   My bibliography  Save this paper

Increasing Weather Risk: Fact or Fiction?

Author

Listed:
  • Weining Wang
  • Ihtiyor Bobojonov
  • Wolfgang Karl Härdle
  • Martin Odening

Abstract

It is an undisputed fact that weather risk increases over time due to climate change. However, qualification of this statement with regard to the type of weather risk and geographical location is needed. We investigate the application of novel statistical tools for assessing changes in weather risk over time. We apply local t-test, change point tests and Mann-Kendall test as well as quantile regression to weather risk indicators that are relevant from the viewpoint of agricultural production. Our results show that weather risk follows different pattern depending on the type of risk and the location.

Suggested Citation

  • Weining Wang & Ihtiyor Bobojonov & Wolfgang Karl Härdle & Martin Odening, 2011. "Increasing Weather Risk: Fact or Fiction?," SFB 649 Discussion Papers SFB649DP2011-077, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2011-077
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2011-077.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Härdle, Wolfgang K. & Song, Song, 2010. "Confidence Bands In Quantile Regression," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1180-1200, August.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Anton Andriyashin & Michal Benko & Wolfgang Härdle & Roman Timofeev & Uwe Ziegenhagen, 2006. "Color Harmonization in Car Manufacturing Process," SFB 649 Discussion Papers SFB649DP2006-071, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Cheridito & Ulrich Horst & Michael Kupper & Traian A. Pirvu, 2016. "Equilibrium Pricing in Incomplete Markets Under Translation Invariant Preferences," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 174-195, February.
    2. Raffaele Fiocco, 2012. "Competition and regulation with product differentiation," Journal of Regulatory Economics, Springer, vol. 42(3), pages 287-307, December.
    3. Alena MyÅ¡iÄ ková & Song Song & Piotr Majer & Peter N.C. Mohr & Hauke R. Heekeren & Wolfgang K. Härdle, 2011. "Risk Patterns and Correlated Brain Activities. Multidimensional statistical analysis of fMRI data with application to risk patterns," SFB 649 Discussion Papers SFB649DP2011-085, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Ulrich Horst & Michael Kupper & Andrea Macrina & Christoph Mainberger, 2011. "Continuous Equilibrium under Base Preferences and Attainable Initial Endowments," SFB 649 Discussion Papers SFB649DP2011-082, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    2. Duygun, Meryem & Tunaru, Radu & Vioto, Davide, 2021. "Herding by corporates in the US and the Eurozone through different market conditions," Journal of International Money and Finance, Elsevier, vol. 110(C).
    3. Mengmeng Guo & Lhan Zhou & Jianhua Z. Huang & Wolfgang Karl Härdle, 2013. "Functional Data Analysis of Generalized Quantile Regressions," SFB 649 Discussion Papers SFB649DP2013-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Song, Song & Ritov, Ya’acov & Härdle, Wolfgang K., 2012. "Bootstrap confidence bands and partial linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 244-262.
    5. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    6. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    7. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    8. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    9. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    10. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    11. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    12. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    13. Shweta Bahl & Ajay Sharma, 2021. "Education–Occupation Mismatch and Dispersion in Returns to Education: Evidence from India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 251-298, January.
    14. Nguyen, Thao & Bai, Min & Hou, Greg & Vu, Manh-Chien, 2020. "State ownership and adjustment speed toward target leverage: Evidence from a transitional economy," Research in International Business and Finance, Elsevier, vol. 53(C).
    15. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    16. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    17. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    18. Valentine Fays & Benoît Mahy & François Rycx, 2021. "Wage Differences According to Workers’ Origin: The Role of Working More Upstream in GVCs," LIDAM Discussion Papers IRES 2021022, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES), revised 28 Aug 2021.
    19. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    20. Aboura, Sofiane & Chevallier, Julien, 2016. "Spikes and crashes in the oil market," Research in International Business and Finance, Elsevier, vol. 36(C), pages 615-623.

    More about this item

    Keywords

    weather extremes; agricultural risk; change point test; quantile regressions;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2011-077. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team The email address of this maintainer does not seem to be valid anymore. Please ask RDC-Team to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.