IDEAS home Printed from
   My bibliography  Save this paper

Completely Uncoupled Dynamics and Nash Equilibria


  • Yakov Babichenko


A completely uncoupled dynamic is a repeated play of a game, where each period every player knows only his action set and the history of his own past actions and payoffs. One main result is that there exist no completely uncoupled dynamics with finite memory that lead to pure Nash equilibria (PNE) in almost all games possessing pure Nash equilibria. By "leading to PNE" we mean that the frequency of time periods at which some PNE is played converges to 1 almost surely. Another main result is that this is not the case when PNE is replaced by "Nash epsilon-equilibria": we exhibit a completely uncoupled dynamic with finite memory such that from some time on a Nash epsion-equilibrium is played almost surely.

Suggested Citation

  • Yakov Babichenko, 2010. "Completely Uncoupled Dynamics and Nash Equilibria," Discussion Paper Series dp529, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp529

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    2. Dean Foster & H Peyton Young, 1999. "On the Impossibility of Predicting the Behavior of Rational Agents," Economics Working Paper Archive 423, The Johns Hopkins University,Department of Economics, revised Jun 2001.
    3. Hart, Sergiu & Mas-Colell, Andreu, 2006. "Stochastic uncoupled dynamics and Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 286-303, November.
    4. Foster, Dean P. & Young, H. Peyton, 2003. "Learning, hypothesis testing, and Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 45(1), pages 73-96, October.
    5. H. Peyton Young, 2007. "The Possible and the Impossible in Multi-Agent Learning," Economics Series Working Papers 304, University of Oxford, Department of Economics.
    6. Sergiu Hart & Andreu Mas-Colell, 2003. "Uncoupled Dynamics Do Not Lead to Nash Equilibrium," American Economic Review, American Economic Association, vol. 93(5), pages 1830-1836, December.
    7. Foster, Dean P. & Young, H. Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    8. repec:oxf:wpaper:384 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Daskalakis, Constantinos & Deckelbaum, Alan & Kim, Anthony, 2015. "Near-optimal no-regret algorithms for zero-sum games," Games and Economic Behavior, Elsevier, vol. 92(C), pages 327-348.
    2. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    3. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications, Elsevier.
    4. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp529. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Simkin). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.