IDEAS home Printed from https://ideas.repec.org/p/hit/hiasdp/hias-e-125.html
   My bibliography  Save this paper

Cambodian Refugees

Author

Listed:
  • Kogure, Katsuo
  • Kubo, Masahiro

Abstract

This paper examines the consequences of forced displacement for Cambodian refugees during the Cambodian conflict (1978-1991). Using complete count 1998 Census microdata, we focus on the two major groups of returnees, namely those from the neighboring countries of Thailand and Vietnam, which were under the control of different great powers, respectively Western and Eastern, during the Cold War. The former stayed in refugee camps with humanitarian assistance prior to repatriation and the latter did not. Consistent with the availability of humanitarian assistance, our analyses reveal that the returnees from Thailand attained higher levels of education - while those from Vietnam, by contrast, attained lower levels of education - than stayers. On the other hand, the two groups both experienced worse labor market outcomes, with employment shifts from the primary sector to the immature tertiary sector. Such adverse displacement impacts are relatively stronger for later returnees. We provide suggestive evidence that adverse displacement impacts can be attributed to congested labor markets resulting from limited access to available agricultural land, exacerbated by the high contamination of landmines and UXOs during the conflict. Our results demonstrate that forced displacement due to conflict in a developing country can be a potential source of future misallocation.

Suggested Citation

  • Kogure, Katsuo & Kubo, Masahiro, 2022. "Cambodian Refugees," Discussion paper series HIAS-E-125, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
  • Handle: RePEc:hit:hiasdp:hias-e-125
    Note: November 11, 2022
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/78372/070_hiasDP-E-125.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Wößmann, 2021. "Mentoring verbessert die Arbeitsmarktchancen von stark benachteiligten Jugendlichen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 74(02), pages 31-38, February.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    4. Cl'ement de Chaisemartin & Jaime Ramirez-Cuellar, 2019. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," Papers 1906.00288, arXiv.org, revised Sep 2022.
    5. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    6. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    7. Huremovic, Kenan & Jiménez, Gabriel & Moral-Benito, Enrique & Vega-Redondo, Fernando & Peydró, José-Luis, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," EconStor Preprints 222281, ZBW - Leibniz Information Centre for Economics.
    8. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Dec 2022.
    9. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    10. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    11. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    12. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    13. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    14. Suresh de Mel & David McKenzie & Christopher Woodruff, 2019. "Labor Drops: Experimental Evidence on the Return to Additional Labor in Microenterprises," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 202-235, January.
    15. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    16. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    17. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    18. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    19. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials [Microcredit impacts: Evidence from a randomized microcredit program placement experiment by Compartamos Banco]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    20. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.

    More about this item

    Keywords

    conflict; forced displacement; refugees; repatriation; Cambodia;
    All these keywords.

    JEL classification:

    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions
    • N35 - Economic History - - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy - - - Asia including Middle East

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:hiasdp:hias-e-125. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ashitjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/ashitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.