IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.08729.html
   My bibliography  Save this paper

Assumption-robust Causal Inference

Author

Listed:
  • Aditya Ghosh
  • Dominik Rothenhausler

Abstract

In observational causal inference, it is common to encounter multiple adjustment sets that appear equally plausible. It is often untestable which of these adjustment sets are valid to adjust for (i.e., satisfies ignorability). This discrepancy can pose practical challenges as it is typically unclear how to reconcile multiple, possibly conflicting estimates of the average treatment effect (ATE). A naive approach is to report the whole range (convex hull of the union) of the resulting confidence intervals. However, the width of this interval might not shrink to zero in large samples and can be unnecessarily wide in real applications. To address this issue, we propose a summary procedure that generates a single estimate, one confidence interval, and identifies a set of units for which the causal effect estimate remains valid, provided at least one adjustment set is valid. The width of our proposed confidence interval shrinks to zero with sample size at $n^{-1/2}$ rate, unlike the original range which is of constant order. Thus, our assumption-robust approach enables reliable causal inference on the ATE even in scenarios where most of the adjustment sets are invalid. Admittedly, this robustness comes at a cost: our inferential guarantees apply to a target population close to, but different from, the one originally intended. We use synthetic and real-data examples to demonstrate that our proposed procedure provides substantially tighter confidence intervals for the ATE as compared to the whole range. In particular, for a real-world dataset on 401(k) retirement plans our method produces a confidence interval 50\% shorter than the whole range of confidence intervals based on multiple adjustment sets.

Suggested Citation

  • Aditya Ghosh & Dominik Rothenhausler, 2025. "Assumption-robust Causal Inference," Papers 2505.08729, arXiv.org.
  • Handle: RePEc:arx:papers:2505.08729
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.08729
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    4. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    5. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    6. Jacob Dorn & Kevin Guo & Nathan Kallus, 2025. "Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 120(549), pages 331-342, January.
    7. AlexanderM. Franks & Alexander D’Amour & Avi Feller, 2020. "Flexible Sensitivity Analysis for Observational Studies Without Observable Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1730-1746, December.
    8. B Karmakar & B French & D S Small, 2019. "Integrating the evidence from evidence factors in observational studies," Biometrika, Biometrika Trust, vol. 106(2), pages 353-367.
    9. Jacob Dorn & Kevin Guo, 2023. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2645-2657, October.
    10. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    11. Hainmueller, Jens & Mummolo, Jonathan & Xu, Yiqing, 2019. "How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice," Political Analysis, Cambridge University Press, vol. 27(2), pages 163-192, April.
    12. Emily Oster, 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 187-204, April.
    13. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    14. Paul R. Rosenbaum, 2010. "Evidence factors in observational studies," Biometrika, Biometrika Trust, vol. 97(2), pages 333-345.
    15. Jacob Dorn & Kevin Guo, 2021. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Papers 2102.04543, arXiv.org, revised Aug 2023.
    16. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    17. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    18. Blackwell, Matthew, 2014. "A Selection Bias Approach to Sensitivity Analysis for Causal Effects," Political Analysis, Cambridge University Press, vol. 22(2), pages 169-182, April.
    19. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    20. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, June.
    21. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
    2. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    3. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    4. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    5. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    6. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    7. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    8. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    9. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    10. Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
    11. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    12. Mogstad, Magne & Torgovitsky, Alexander, 2024. "Instrumental variables with unobserved heterogeneity in treatment effects," Handbook of Labor Economics,, Elsevier.
    13. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    14. Sokolov, Boris, 2025. "Causal Estimands for Policy Evaluation and Beyond," SocArXiv 4vtpk_v1, Center for Open Science.
    15. Abadie, Alberto & Gu, Jiaying & Shen, Shu, 2024. "Instrumental variable estimation with first-stage heterogeneity," Journal of Econometrics, Elsevier, vol. 240(2).
    16. Joshua B. Gilbert & Zachary Himmelsbach & James Soland & Mridul Joshi & Benjamin W. Domingue, 2024. "Estimating Heterogeneous Treatment Effects with Item-Level Outcome Data: Insights from Item Response Theory," Papers 2405.00161, arXiv.org, revised Jan 2025.
    17. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    18. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    19. Kirk Bansak, 2021. "Estimating causal moderation effects with randomized treatments and non‐randomized moderators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 65-86, January.
    20. Guido Imbens & Yiqing Xu, 2024. "Comparing Experimental and Nonexperimental Methods: What Lessons Have We Learned Four Decades After LaLonde (1986)?," Papers 2406.00827, arXiv.org, revised May 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.08729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.