IDEAS home Printed from
   My bibliography  Save this article

Evidence factors in observational studies


  • Paul R. Rosenbaum


Some experiments involve more than one random assignment of treatments to units. An analogous situation arises in certain observational studies, although randomization is not used, so each assignment may be biased. If each assignment is suspect, it is natural to ask whether there are separate pieces of information, dependent upon different assumptions, and perhaps whether conclusions about treatment effects are not critically dependent upon one or another suspect assumption. The design of an observational study contains evidence factors if it permits several statistically independent tests of the same null hypothesis about treatment effects, where these tests rely on different assumptions about treatment assignments at several levels of assignment. Two designs and two empirical examples are considered, one example of each design. In the dose-control design, there are matched pairs of a treated subject and an untreated control, and doses of treatment vary between pairs for treated subjects; this yields two evidence factors. In the varied intensity design, there are matched sets with two treated subjects and one or more untreated controls, where the two treated subjects within the same matched set receive different doses of treatment, and in a technically different way, the design yields two evidence factors. Copyright 2010, Oxford University Press.

Suggested Citation

  • Paul R. Rosenbaum, 2010. "Evidence factors in observational studies," Biometrika, Biometrika Trust, vol. 97(2), pages 333-345.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:333-345

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    2. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    3. Wei, Ying & Carroll, Raymond J., 2009. "Quantile Regression With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1129-1143.
    4. Delaigle, Aurore & Hall, Peter, 2008. "Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 280-287, March.
    5. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
    6. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(04), pages 1010-1043, August.
    7. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    8. Purdom Elizabeth & Holmes Susan P, 2005. "Error Distribution for Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Harrison, Ann E. & Lin, Justin Yifu & Xu, Lixin Colin, 2014. "Explaining Africa’s (Dis)advantage," World Development, Elsevier, vol. 63(C), pages 59-77.
    2. Cull, Robert & Xu, Lixin Colin & Yang, Xi & Zhou, Li-An & Zhu, Tian, 2017. "Market facilitation by local government and firm efficiency: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 42(C), pages 460-480.
    3. Edward Feser, 2013. "Isserman’s Impact," International Regional Science Review, , vol. 36(1), pages 44-68, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:333-345. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.