IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.20550.html
   My bibliography  Save this paper

Policy Learning under Unobserved Confounding: A Robust and Efficient Approach

Author

Listed:
  • Zequn Jin
  • Gaoqian Xu
  • Xi Zheng
  • Yahong Zhou

Abstract

This paper develops a robust and efficient method for policy learning from observational data in the presence of unobserved confounding, complementing existing instrumental variable (IV) based approaches. We employ the marginal sensitivity model (MSM) to relax the commonly used yet restrictive unconfoundedness assumption by introducing a sensitivity parameter that captures the extent of selection bias induced by unobserved confounders. Building on this framework, we consider two distributionally robust welfare criteria, defined as the worst-case welfare and policy improvement functions, evaluated over an uncertainty set of counterfactual distributions characterized by the MSM. Closed-form expressions for both welfare criteria are derived. Leveraging these identification results, we construct doubly robust scores and estimate the robust policies by maximizing the proposed criteria. Our approach accommodates flexible machine learning methods for estimating nuisance components, even when these converge at moderately slow rate. We establish asymptotic regret bounds for the resulting policies, providing a robust guarantee against the most adversarial confounding scenario. The proposed method is evaluated through extensive simulation studies and empirical applications to the JTPA study and Head Start program.

Suggested Citation

  • Zequn Jin & Gaoqian Xu & Xi Zheng & Yahong Zhou, 2025. "Policy Learning under Unobserved Confounding: A Robust and Efficient Approach," Papers 2507.20550, arXiv.org.
  • Handle: RePEc:arx:papers:2507.20550
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.20550
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.20550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.