IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1243-1254.html
   My bibliography  Save this article

Quantile-Optimal Treatment Regimes

Author

Listed:
  • Lan Wang
  • Yu Zhou
  • Rui Song
  • Ben Sherwood

Abstract

Finding the optimal treatment regime (or a series of sequential treatment regimes) based on individual characteristics has important applications in areas such as precision medicine, government policies, and active labor market interventions. In the current literature, the optimal treatment regime is usually defined as the one that maximizes the average benefit in the potential population. This article studies a general framework for estimating the quantile-optimal treatment regime, which is of importance in many real-world applications. Given a collection of treatment regimes, we consider robust estimation of the quantile-optimal treatment regime, which does not require the analyst to specify an outcome regression model. We propose an alternative formulation of the estimator as a solution of an optimization problem with an estimated nuisance parameter. This novel representation allows us to investigate the asymptotic theory of the estimated optimal treatment regime using empirical process techniques. We derive theory involving a nonstandard convergence rate and a nonnormal limiting distribution. The same nonstandard convergence rate would also occur if the mean optimality criterion is applied, but this has not been studied. Thus, our results fill an important theoretical gap for a general class of policy search methods in the literature. The article investigates both static and dynamic treatment regimes. In addition, doubly robust estimation and alternative optimality criterion such as that based on Gini’s mean difference or weighted quantiles are investigated. Numerical simulations demonstrate the performance of the proposed estimator. A data example from a trial in HIV+ patients is used to illustrate the application. Supplementary materials for this article are available online.

Suggested Citation

  • Lan Wang & Yu Zhou & Rui Song & Ben Sherwood, 2018. "Quantile-Optimal Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1243-1254, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1243-1254
    DOI: 10.1080/01621459.2017.1330204
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1330204
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1330204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatice Jenkins & Ezuldeen Alshareef & Amer Mohamad, 2023. "The impact of corruption on commercial banks' credit risk: Evidence from a panel quantile regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1364-1375, April.
    2. Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
    3. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    4. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    5. Cho, Youngjoo & Zhan, Xiang & Ghosh, Debashis, 2022. "Nonlinear predictive directions in clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Cai, Hengrui & Shi, Chengchun & Song, Rui & Lu, Wenbin, 2023. "Jump interval-learning for individualized decision making with continuous treatments," LSE Research Online Documents on Economics 118231, London School of Economics and Political Science, LSE Library.
    7. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    8. Zhang, Yingying & Shi, Chengchun & Luo, Shikai, 2023. "Conformal off-policy prediction," LSE Research Online Documents on Economics 118250, London School of Economics and Political Science, LSE Library.
    9. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1243-1254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.