IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i4d10.1007_s13253-023-00551-4.html
   My bibliography  Save this article

Deep Spatial Q-Learning for Infectious Disease Control

Author

Listed:
  • Zhishuai Liu

    (Duke University)

  • Jesse Clifton

    (NC State University)

  • Eric B. Laber

    (Duke University)

  • John Drake

    (University of Georgia)

  • Ethan X. Fang

    (Duke University)

Abstract

Infectious diseases are a cause of humanitarian and economic crises across the world. In developing regions, a severe epidemic can result in the collapse of healthcare infrastructure or even the failure of an affected state. The most recent 2013–2015 outbreak of Ebola virus disease in West Africa is an example of such an epidemic. The economic, infrastructural, and human costs of this outbreak provide strong motivation for the examination of adaptive treatment strategies that allocate resources in response to and anticipation of the evolution of an epidemic. We formalize adaptive management of an emerging infectious disease spreading across a set of locations as a treatment regime that maps up-to-date information on the epidemic to a subset of locations identified as high-priority for treatment. An optimal treatment regime in this context is defined as maximizing the expectation of a pre-specified cumulative utility measure, e.g., the number of disease-free individuals or the estimated reduction in morbidity or mortality relative to a baseline intervention strategy. Because the disease dynamics are not known at the beginning of an outbreak, an optimal treatment regime must be estimated online, i.e., as data accumulate; thus, an effective estimation algorithm must balance choosing interventions that lead to information gain and thereby model improvement with interventions that appear to be optimal under the current estimated model. We develop a novel model-free algorithm for the online management of an infectious disease spreading over a finite set of locations and an indefinite or infinite time horizon. The proposed algorithm balances exploration and exploitation using a semi-parametric variant of Thompson sampling. We also introduce a graph neural network-based estimator in order to improve the performance of this class of algorithms. Simulations, including those mimicking the spread of the 2013–2015 Ebola outbreak, suggest that an adaptive treatment strategy has the potential to significantly reduce mortality relative to ad hoc management strategies. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Zhishuai Liu & Jesse Clifton & Eric B. Laber & John Drake & Ethan X. Fang, 2023. "Deep Spatial Q-Learning for Infectious Disease Control," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 749-773, December.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:4:d:10.1007_s13253-023-00551-4
    DOI: 10.1007/s13253-023-00551-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00551-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00551-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    2. Yufan Zhao & Donglin Zeng & Mark A. Socinski & Michael R. Kosorok, 2011. "Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer," Biometrics, The International Biometric Society, vol. 67(4), pages 1422-1433, December.
    3. Steven L. Scott, 2010. "A modern Bayesian look at the multi‐armed bandit," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 639-658, November.
    4. Xin Zhou & Nicole Mayer-Hamblett & Umer Khan & Michael R. Kosorok, 2017. "Residual Weighted Learning for Estimating Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 169-187, January.
    5. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    6. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    7. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    8. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-19, March.
    9. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-49, March.
    10. Ashkan Ertefaie & Robert L Strawderman, 2018. "Constructing dynamic treatment regimes over indefinite time horizons," Biometrika, Biometrika Trust, vol. 105(4), pages 963-977.
    11. Rubin Daniel B. & van der Laan Mark J., 2012. "Statistical Issues and Limitations in Personalized Medicine Research with Clinical Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-20, July.
    12. Daniel Almirall & Thomas Ten Have & Susan A. Murphy, 2010. "Structural Nested Mean Models for Assessing Time-Varying Effect Moderation," Biometrics, The International Biometric Society, vol. 66(1), pages 131-139, March.
    13. Daniel J. Luckett & Eric B. Laber & Anna R. Kahkoska & David M. Maahs & Elizabeth Mayer-Davis & Michael R. Kosorok, 2020. "Estimating Dynamic Treatment Regimes in Mobile Health Using V-Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 692-706, April.
    14. Robin Henderson & Phil Ansell & Deyadeen Alshibani, 2010. "Regret-Regression for Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 66(4), pages 1192-1201, December.
    15. Eric B. Laber & Nick J. Meyer & Brian J. Reich & Krishna Pacifici & Jaime A. Collazo & John M. Drake, 2018. "Optimal treatment allocations in space and time for on‐line control of an emerging infectious disease," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 743-789, August.
    16. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    17. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2013. "Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions," Biometrika, Biometrika Trust, vol. 100(3), pages 681-694.
    18. Lan Wang & Yu Zhou & Rui Song & Ben Sherwood, 2018. "Quantile-Optimal Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1243-1254, July.
    19. Ying-Qi Zhao & Donglin Zeng & Eric B. Laber & Michael R. Kosorok, 2015. "New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 583-598, June.
    20. Laura Forastiere & Edoardo M. Airoldi & Fabrizia Mealli, 2021. "Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 901-918, April.
    21. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    22. repec:bla:biomet:v:71:y:2015:i:4:p:895-904 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    2. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    3. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    4. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    5. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    6. Emily L. Butler & Eric B. Laber & Sonia M. Davis & Michael R. Kosorok, 2018. "Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules," Biometrics, The International Biometric Society, vol. 74(1), pages 18-26, March.
    7. Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
    8. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    9. Eric B. Laber & Daniel J. Lizotte & Bradley Ferguson, 2014. "Set-valued dynamic treatment regimes for competing outcomes," Biometrics, The International Biometric Society, vol. 70(1), pages 53-61, March.
    10. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
    11. Eric B. Laber & Anastasios A. Tsiatis & Marie Davidian & Shannon T. Holloway, 2014. "Discussion of “Combining biomarkers to optimize patient treatment recommendation”," Biometrics, The International Biometric Society, vol. 70(3), pages 707-710, September.
    12. Gao, Yuhe & Shi, Chengchun & Song, Rui, 2023. "Deep spectral Q-learning with application to mobile health," LSE Research Online Documents on Economics 119445, London School of Economics and Political Science, LSE Library.
    13. Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
    14. Qian Guan & Eric B. Laber & Brian J. Reich, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 936-942, July.
    15. Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
    16. Rebecca Hager & Anastasios A. Tsiatis & Marie Davidian, 2018. "Optimal two‐stage dynamic treatment regimes from a classification perspective with censored survival data," Biometrics, The International Biometric Society, vol. 74(4), pages 1180-1192, December.
    17. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    18. Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
    19. Baqun Zhang & Min Zhang, 2018. "C‐learning: A new classification framework to estimate optimal dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 74(3), pages 891-899, September.
    20. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:4:d:10.1007_s13253-023-00551-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.