IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v8y2012i1n18.html
   My bibliography  Save this article

Statistical Issues and Limitations in Personalized Medicine Research with Clinical Trials

Author

Listed:
  • Rubin Daniel B.

    (Food and Drug Administration)

  • van der Laan Mark J.

    (University of California - Berkeley)

Abstract

We discuss using clinical trial data to construct and evaluate rules that use baseline covariates to assign different treatments to different patients. Given such a candidate personalization rule, we first note that its performance can often be evaluated without actually applying the rule to subjects, and a class of estimators is characterized from a statistical efficiency standpoint. We also point out a recently noted reduction of the rule construction problem to a classification task and extend results in this direction. Together these facts suggest a natural form of cross-validation in which a personalized medicine rule can be constructed from clinical trial data using standard classification tools and then evaluated in a replicated trial. Because replication is often required by the FDA to provide evidence of safety and efficacy before pharmaceutical drugs can be marketed, there are abundant data with which to explore the potential benefits of more tailored therapy. We constructed and evaluated personalized medicine rules using simulations based on two active-controlled randomized clinical trials of antibacterial drugs for the treatment of skin and skin structure infections. Unfortunately we present negative results that did not suggest benefit from personalization. We discuss the implications of this finding and why statistical approaches to personalized medicine problems will often face difficult challenges.

Suggested Citation

  • Rubin Daniel B. & van der Laan Mark J., 2012. "Statistical Issues and Limitations in Personalized Medicine Research with Clinical Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-20, July.
  • Handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:18
    DOI: 10.1515/1557-4679.1423
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1557-4679.1423
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1557-4679.1423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    2. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    3. Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
    4. Rubin Daniel B & van der Laan Mark J., 2008. "Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-40, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I Díaz & O Savenkov & K Ballman, 2018. "Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes," Biometrika, Biometrika Trust, vol. 105(3), pages 723-738.
    2. Cui, Yifan & Tchetgen Tchetgen, Eric, 2021. "On a necessary and sufficient identification condition of optimal treatment regimes with an instrumental variable," Statistics & Probability Letters, Elsevier, vol. 178(C).
    3. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
    2. Ying-Qi Zhao & Michael R. Kosorok, 2014. "Discussion of combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 713-716, September.
    3. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
    4. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    5. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    6. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brian C. Sauer & Brandon K. Bellows & Yue Zhang & William S. Weintraub & Andrew E. Moran & Jincheng Shen, 2022. "Estimating the optimal individualized treatment rule from a cost‐effectiveness perspective," Biometrics, The International Biometric Society, vol. 78(1), pages 337-351, March.
    7. Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
    8. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    9. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    10. Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 695-707, September.
    11. Shi, Chengchun & Lu, Wenbin & Song, Rui, 2019. "A sparse random projection-based test for overall qualitative treatment effects," LSE Research Online Documents on Economics 102107, London School of Economics and Political Science, LSE Library.
    12. Xin Chen & Rui Song & Jiajia Zhang & Swann Arp Adams & Liuquan Sun & Wenbin Lu, 2022. "On estimating optimal regime for treatment initiation time based on restricted mean residual lifetime," Biometrics, The International Biometric Society, vol. 78(4), pages 1377-1389, December.
    13. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    14. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    15. Andrew Bennett & Nathan Kallus, 2020. "Efficient Policy Learning from Surrogate-Loss Classification Reductions," Papers 2002.05153, arXiv.org.
    16. Shi, Chengchun & Song, Rui & Lu, Wenbin, 2016. "Robust learning for optimal treatment decision with NP-dimensionality," LSE Research Online Documents on Economics 102114, London School of Economics and Political Science, LSE Library.
    17. Zhang, Haixiang & Huang, Jian & Sun, Liuquan, 2020. "A rank-based approach to estimating monotone individualized two treatment regimes," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    18. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    19. Wallace, Michael P. & Moodie, Erica E. M. & Stephens, David A., 2017. "Dynamic Treatment Regimen Estimation via Regression-Based Techniques: Introducing R Package DTRreg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i02).
    20. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.